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Time Is of the Essence: Event History
Models in Political Science”

Janet M. Box-Steffensmeier, Ohio State University
Bradford S. Jones, University of Arizona

Many questions of interest to political scientists may be answered with event history
analysis, which studies the duration and timing of events. We discuss the statistical analy-
sis of event history data—data giving the number, timing, and sequence of changes in a
variable of interest. These methods are illustrated by examining three substantive politi-
cal science problems: overt military interventions, challenger deterrence, and congres-
sional career paths; many other applications are possible. Our article is intended to pro-
vide a better understanding of the growing number of applications that currently exist in
political science and to encourage greater use of these models by showing why event his-
tory models are useful in political science research and explaining how one specifies and
interprets these models.

Introduction!

Why do some states adopt certain kinds of public policies while other
states do not? Why are some governments more stable than others? How is
tenure in a political office related to the odds of losing that office? The an-
swer to each of these questions bears, at least in part, on some implicit as-
sumption that when some event occurs is as important as if some event oc-
curs. Time plays a key role in politics and a class of econometric models,
known collectively as event history analysis, can provide researchers lever-
age on the issue of the timing of political change.? Event history analysis al-
lows researchers to answer a more extensive set of questions than conven-
tional analyses by using information on the number, timing, and sequence of
changes in the dependent variable.

In event history analysis, we are concerned with patterns and causes of
change (Yamaguchi 1991). We are interested in knowing how the duration
spent in one social state affects the probability some entity will make a tran-
sition to another social state. Political science theories have become increas-
ingly focused on change processes; and temporal data are becoming widely
available, yet the vast majority of empirical research focuses on static rela-

*Authors are listed alphabetically. We would like to thank Laura Arnold, Neal Beck, Barry Burden,
Bill Dixon, David Kimball, Miller McPherson, Krishnan Namboodiri, David Patterson, Lynn Smith-
Lovin, and Richard Tucker for helpful comments and suggestions.

IThe data, program code, and documentation may be obtained by anonymous ftp from
ICPSR’s publication-related archive under the authors’ names or title of the article.

2We recognize that these models belong to the broader class of probabilistic models. Readers
interested in a more mathematical treatment are referred to Tuma and Hannan (1984) or Greene
(1993).
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tionships (i.e., at one point in time, typically cross-sectional studies). But as
Tuma and Hannan (1984, 3) point out, even when time-series or panel data
are analyzed, the temporal structure is often ignored and the data are treated
as though they are cross-sections with some additional methodological com-
plications involving autocorrelations. In addition, we strongly believe that as
appropriate methods for studying change—event history methods—are bet-
ter understood, more dynamic analyses will be conducted.

Bartels and Brady (1993) argue that political methodology should be di-
rected toward more wide-spread use of models for event history. In an at-
tempt to further this goal, we discuss why event history models are useful in
political science research, explain how one specifies and estimates models,
how one interprets the results, and how one chooses between competing
models. We illustrate our discussion with empirical examples and the Ap-
pendix discusses software available for estimation. To understand the poten-
tial utility of event history models, one must first understand the problems
associated with traditional regression-based methods.

Traditional Regression-Based Methods and Event History Data

Suppose we are interested in understanding why some U.S. states are
more apt to adopt a certain kind of public policy while other states are not.
One possible strategy would be to record the number of legislative sessions
the policy was considered until its adoption. Presumably those states quicker
to adopt had stronger preferences for the policy while other states which
adopted later had weaker preferences for the policy. One indicator of issue
innovation and diffusion might be to record the duration of time before
adoption occurs. In this simple example, our dependent variable would be an
indicator of time elapsed before adoption. We can denote this as ¢;. In addi-
tion to collecting data on duration, data could be collected on some exog-
enous variables theorized to influence #;. To test hypotheses concerning
these exogenous variables, a regression could be estimated:

t=BX+¢ [1]

where B'X is a matrix of exogenous variables and associated parameters and
€ is a random disturbance. While this design seems plausible, at least two
problems plague this approach: right-censoring and time-varying covariates.

To illustrate the problem of right-censoring, consider Figure 1. In this
figure, four hypothetical cases of state policy adoption are considered. In
case one, the duration until adoption is three “time units.” In case two, the
duration prior to adopting is five units. Case three represents a state that
adopted the policy during the last period of data collection (eight units). Fi-
nally, case four depicts a state that by the last time period observed, had yet
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Figure 1. Hypothetical Durations for Time-to-Adoption
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Each time unit represents an observation period; @ denotes the occurrence of an
event and O denotes nonoccurrence of an event)

to adopt a policy. In this figure, cases 1-3 present no special analytic prob-
lems. We see that the duration prior to adoption is two-thirds longer in state
two than in state one. And the duration in state three is 60% longer than in
state two. The variation in these durations could possibly be explained by
the exogenous variables. Case four, however, is problematic: by the end of
the observation period this state still had not adopted the policy, it is consid-
ered right-censored. We do not know when state four will end.

The problem with the regression model is its failure to distinguish state
three from state four although the two states are quite distinct; one has
adopted and the other has not. Inclusion of right-censored observations in the
model implicitly treats them as having experienced the event (policy adop-
tion) when in fact they have not. And since we cannot foretell the future, we
do not know how “much longer” (if ever) censored observations would go
before experiencing an event. One “solution” to the censoring problem
would be to eliminate all censored observations from the data set. Unfortu-
nately, this cure is worse than the ill. If the factors producing censoring are
completely unrelated to factors promoting an event’s occurrence, then trun-
cating the sample may be a solution; however, censored observations are of-
ten influenced by precisely the same factors uncensored observations are.



EVENT HISTORY MODELS IN POLITICAL SCIENCE 1417

Under such conditions, truncating the sample to include only uncensored ob-
servations would produce a biased sample because only observations initially
prone to experience an event would be included.? States with “staying
power” would be eliminated from the sample. Truncating the sample would
induce selection bias into the data and the implications of this problem are
well-known (Achen 1986; Geddes 1990; King, Keohane, and Verba 1994).

Another alternative to avoiding the censoring problem would be to cre-
ate a dichotomous indicator denoting whether or not a state experienced the
event within the time frame of the analysis. As Petersen (1991) notes, how-
ever, this “solution” belies the logic of studying time-dependency in the first
place. An indicator variable cannot capture the variability in duration time a
state spends prior to adoption—precisely the effect we are trying to under-
stand. In short, a dummy indicator could not discriminate between varying
times-to-adoption. However, running logit or probit models and losing infor-
mation on when an event occurs is quite common in the literature. This does
not cause bias or inconsistency, but it gives estimates that are inefficient, i.e.,
that have larger variances, relative to the estimates from event history analy-
sis (Chung, Schmidt, and Witte 1991).

An additional problem involves incorporation of time-varying predic-
tors. The regression model must treat all exogenous variables as fixed. Un-
fortunately, many political factors related to policy adoption vary across
time. For example, the partisan distribution in a state assembly might affect
the odds of adoption. Because the partisan distribution in an assembly var-
ies, it would be preferable to use a methodology that could account for this.
Thus, the traditional regression approach breaks down in an important way;
we have a dynamic process, but we do not have a dynamic model. A meth-
odology is needed that can adequately address these problems.*

The Event History Approach

The underlying premise of a duration or event history model is that the
“duration” of some social process is being modeled. In political research,
scholars may be interested in the duration of time before countries engage
in military conflict, the “survival” of parliamentary governments, or the
length of congressional careers. The event history approach may also prove
useful to political psychologists. Duration models could be one way to
model reaction times in cognitive experiments. For example, Robinson and
Smith-Lovin (1990) have employed event history methods in their studies

3The bias occurs when there is a lot of right-censoring; it is not relevant when N is large or
right-censored cases are few and start mostly near the end of the observation period.

4Alt and King (1995) provide an enlightening discussion of coding and analysis schemes (bi-
nary, count, and duration). Tuma, Hannan, and Groeneveld (1979) contrast event history analysis
with cross-sectional, count, and panel data analysis.
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of conversational dynamics. In general, the event history approach can lead
to insights on the full span of a social process. This approach is obviously
preferable to typical cross-sectional designs and even panel designs. With
respect to cross-sectional designs, the dynamics of a process cannot possi-
bly be modeled. Additionally, we implicitly make the unlikely assumption
that the process being modeled with the cross-sectional data is in equilib-
rium (Tuma and Hannan 1984). Panel study designs clearly elicit greater
leverage on the problem of understanding change; however, as Singer and
Spilerman (1976a, 1976b) noted long ago, the change process observed in
typical panel studies is often consistent with many dynamic specifications.
Furthermore, depending on the spacing of panels, a panel design may lead
to inaccurate conclusions about the rates and timing of change. An event
history design can avoid these problems.

To begin the discussion, we start with three elementary concepts: the
survivor function, the occurrence of an event, and the hazard rate. The sur-
vivor function, S(z), expresses the probability that the duration, T, has sur-
vived beyond, or has not ended by time #:

S@O=P({T=21 [2]

So if we were modeling the duration of time a government stays in power,
each government still in power at the time of our observation would be con-
sidered a survivor. The second concept involves the realization of an event,
which refers to the occurrence in time, of some event or outcome. Often we
collect data or model processes where events can occur continuously in
time. Therefore, we think of the probability density function of an event oc-
curring within some differentiable area:

Pt+At>T2=1)

At 3]

f@) = limy,

The term f{¢) represents the probability density function of the duration (“du-
ration density”) and may be interpreted as the instantaneous probability of
the occurrence of an event T at time ¢. The cumulative distribution function
of the duration may be expressed as:

F(t) = [ faodu (4]
0

The third key concept underlying event history analysis may be defined as
the hazard function. The hazard function or hazard rate may be expressed as
the following:
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Pt+At>T=¢tIT >0

At 51

The hazard rate reflects the rate at which a duration or episode ends in the
interval [¢, ¢ + At], given that the duration has not terminated prior to the
beginning of this interval. Most analyses using duration data tend to model
the hazard rate, A(f), rather than S(¢) or f(). The reason for this is straight-
forward. One may interpret the hazard rate as reflecting the risk an object
incurs at any given moment in time, given an event has not yet occurred.
From a substantive point of view, political scientists can ask interesting
questions such as, “what is the risk a cabinet government will fall?” (c.f.
Warwick 1992), or “how long do members of Congress stay on a congres-
sional committee?” (c.f. Katz and Sala 1996). Such questions beckon a
time dimension; and by modeling the hazard rate, we gain substantial
leverage on answering such questions. An additional reason, why we focus
on the hazard rate is that mathematically, A(z) possesses several desirable
properties.

To illustrate these properties, we need to consider in more detail the
linkage between the survivor function, the duration density, and the hazard
rate. First, define the cumulative hazard function as follows:

H(r) = J'h(u)du 6]
0

H(t) can be thought of as the summation of the hazard experiences from the
beginning of time until £. Knowing H(?), we can now reexpress the survivor
function shown in [1] as a function of the cumulative hazard function:

S(1) = eXp[—J h(u)d(u):l = exp—H(t) [7]
0

while the probability density function of the duration 7, f{t), shown in [2]
may be equivalently reexpressed as:

@) = h@)- eXp{—J h(u)d(u)] = h(t) - exp~H® 8]
0

From [7] and ]8], it is clear that the following relationship holds:

f(®) = h(2) - S(t) [91
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Now we can restate the hazard rate, A(t) from [4] in the following manner:

h(t) - exp~H®

() = exp-H®

(10]

Consequently, the hazard rate can be expressed as the following (from Equa-
tions 7 and 9):

f@®
h(t) = — 11
(®) @) [11]
Finally, rearranging terms in [11] leaves us with the following result:
f@
S() = —= 12
® ) [12]

This shows that the three core concepts of event history modeling—S(z), f(¢),
h(t)—are mathematical functions of each other. Knowing h(t) allows one to
derive the others, which is why h(t) is so useful. Because of these important
relationships, we are in a better position to understand the usefulness of
modeling hazard rates.

Often, practitioners of event history models make assumptions about the
hazard rate’s dependency on time. Does the hazard rate systematically vary
over time or is the probability of duration termination time-invariant? The
assumptions determine which distributions may be used. Suppose, as it often
is, that the hazard rate is assumed to be time-invariant. Time-invariance
means that the rate of termination is neither a decreasing nor increasing func-
tion of time. The most commonly used distribution under such assumptions
is the exponential. The hazard rate for the exponential distribution serves as
a baseline for comparison because it is a constant:

h(t)=h [13]

The hazard rate at any given point in time is equivalent to the hazard rate at
any other point in time. Hence, a graphical depiction of 4 with respect to
time would yield a flat line. From [6], it can be shown that the cumulative
hazard function for the exponential distribution is:

Hit)=h-t [14]

Consequently, the survivor function for the exponential distribution is (from
equations 7 and 14):

S(t)=exp™! [15]
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and the duration density function, f{¢), is (from equations 8 and 15):
fiy=h-exp™! [16]

The exponential distribution is used here to show that knowledge of only the
hazard rate function permits calculation of the survivor and duration density
functions. In general, knowing the hazard rate function or making some as-
sumptions about the distribution of the hazard rate function (and knowing
the relationship of the hazard rate function to the survivor and duration den-
sity functions shown in Equations [7]-[12]) allows computation of the sur-
vivor and distribution density functions. Hence, for mathematical purposes,
event history analyses routinely focus on the hazard rate function. This,
coupled with the nice interpretative qualities of the hazard rate, makes it an
ideal quantity to model in political science. Later in the paper, we consider
distributions other than the exponential; however, before discussing estima-
tion topics, we examine issues of data.

Event History Data

A practical concern for estimation of an event history model is the struc-
ture of the data set. Hypotheses generated from processes at least partially
dependent on time duration presuppose the idea that the duration spent in
one social state is related to the probability of experiencing some event.
Hence, event history data, at a minimum, consist of the length of time a unit
spends in a state before experiencing an event and an indicator denoting
whether or not the observation is right-censored. For most political applica-
tions, it is unlikely the researcher will be satisfied in only examining the ef-
fect of time on the probability of experiencing an event.’

Consequently, if one believes covariates are related to the likelihood of
an event’s occurrence, then these data for each unit in the sample will also
be included. If some covariates are time-varying, then it is necessary to have
data for each unit at each observation period. Finally, event history data tra-
ditionally “track” units at some prespecified starting point until each unit
experiences an event. If a unit does not experience an event by the time the
last observation period ends, the unit is right-censored.

It is critical for the researcher to have a theoretically sound reason for
hypothesizing when a social process for an observation can begin, i.e., when

5In fact, early applications of these types of models tended to only examine the duration of
time until failure or death of an entity or object. Life-table analysis, a precursor to event history
models, generally only examined the distributional nature of death or failure-times. Absent the
specification of covariates, any model we discuss in this paper can be thought of as models solely as
a function of time. Classic estimators of survivor and hazard functions like the Kaplan-Meier Statis-
tic are not dealt with in this paper (Cioffi-Revilla 1985; Cioffi-Revilla and Lai 1995).
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does time start? This involves the notion of “being at risk.” Observations at
risk are simply the sample of units that begin a social process; they become
“at risk” of experiencing some event. The “risk set” therefore, is the set of
units in some time interval that are at risk of experiencing an event. In so-
called discrete time models, the unit is at risk of experiencing the event at
predefined times (for example, election day). A continuous-time model pre-
supposes event occurrence can happen at any point in time. In either formu-
lation, once the event is experienced, the unit exits the risk set. Hence, at
each observation period, the risk set progressively dwindles until, by the end
of the observation plan, no units are at risk (as each has experienced the
event) or they are right-censored.®

In some applications, the natural starting point for a unit to enter the risk
set is straightforward: governments are only at risk of being overthrown
once they take control. In other applications, however, defining the entry
point or beginning point of a social process is not obvious. For example,
when does a conflict, such as the Vietnam War, begin?’ Or when does an in-
dividual first acquire a partisan identification? The left-censoring problem
occurs when observations of individual cases begin after the case has al-
ready entered the risk set. Unobserved histories raise special problems. If
one’s prior history influences the probability of experiencing an event, coef-
ficients generated from data that are heavily laden with left-censored obser-
vations will produce incorrect estimates of duration effects and could result
in biased estimation of covariates. Time-varying covariates are especially
problematic (Tuma and Hannan 1979; Yamaguchi 1991). Ham and Lal.onde
(1996) discuss the problems of initial conditions on studying duration data

6Standard event history models require the assumption that all individuals will eventually ex-
perience the event; split population models relax this assumption and estimate the probability of the
event occurring (Schmidt and Witte 1988, 1989). Schmidt and Witte point out that an advantage of
the split population model is they do not imply unreasonably high failure rates. Swaim and
Podgursky (1994) generalize and apply the split-population model by allowing for right-censoring.
Harris, Kaylan, and Maltz (1981) develop a related model where subgroups have hazard rates of 8,
and 0,, but neither is zero. Split population models also allow one to identify any differences that
may exist between the determinants of failure and determinants of the timing of failure. In some ap-
plications, such as the timing of PAC (political action committee) contributions (Box-Steffensmeier
and Radcliffe 1996), the possibility arises that an event, i.e., a contribution is given, and the timing
of the event depend on different forces. If the population is split into two groups, one composed of
members of Congress that received a contribution and the other composed of members that did not,
then whether the factors that explain receiving a contribution are different from the factors that ex-
plain the timing of receiving a contribution can be explored.

TThe problem is not that the starting points are unmeasurable but rather that they may be con-
troversial or are subject to the researchers discretion. One way that the onset of conflict has been
measured is by using the Correlates of War project data and defining a war to begin when military
engagements produce fatalities in the first year of greater than one thousand (Small and Singer
1982).
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and argue that ignoring these conditions leads to misleading inferences. In
fact, there exist few readily accessible methods to account for the problem
of left-censoring.® From a practical point of view, researchers should try
their best to avoid left-censored data.

Let us turn attention now to the formulation of the dependent variable.
In what Petersen (1991, 295-7) calls the “event history” approach, the de-
pendent variable is an indicator variable denoting whether or not an event
occurred. At each observation point, an individual is coded either a “0” de-
noting no event occurred, or a “1,” denoting the occurrence of an event.
Therefore, there are as many 0 and 1 codings in the data set as there are per-
son-period observations. The second form of the dependent variable in this
class of models is what Petersen (1991) calls the “duration” approach. In
this formulation, the dependent variable records the amount of time that has
passed before an event is experienced. Both approaches result in the same
specification, estimation, and interpretation of the models.

Estimating an Event History Model

In this section, we consider various alternative approaches to estimation
of a typical event history model. As noted earlier, the discrete-time formula-
tion of the event history model presumes change only occurs at discrete, of-
ten predetermined times (for example, election day).® Many conceivable so-
cial processes do not behave so predictably: transitions from one state to
another may occur anywhere in time. Such processes may be referred to as
continuous-time processes. Unfortunately, while many processes may be ab-
solutely continuous, our techniques for observation and/or measurement
may fail to approximate the continuous nature of change. Data for continu-
ous-time processes often are collected at discrete intervals. Examples might
include data collected by fiscal month, quarter, or year. Change may occur
anywhere in the interval, but the data are only “observed” at predefined pe-
riods. So while the continuous-time process presumes knowledge of when
change occurred in time, we only have an approximate guess as to when the
change or transition actually occurred.

In contrast, some longitudinal processes may conceivably be continu-
ous-time processes, but the explicit knowledge of when in time change oc-
curred is largely unimportant. To illustrate, consider an example of state
adoption of public policy. Presumably, a legislature could adopt a policy
anytime within a legislative session. Because state legislatures routinely
record votes, we could easily discern precisely when change occurred. In

8We should note that left-censoring is not a problem endemic only to event history analysis.
Indeed, all cross-sectional models are plagued with left-censored observations.

9See Beck (1995) for an interesting view on the discrete versus continuous-time methods for
analyzing duration data.
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most analyses of state policy adoption, however, the crucial issue is not
knowing exactly when adoption (the “event”) occurred within a legislative
session, but rather when adoption occurred relative to other states. In such
analyses, the year in which a policy was adopted may be sufficient to demar-
cate the occurrence of an event. Therefore, while policy adoption may be a
continuous-time process, a discrete-time view is probably an accurate view
of the process given the nature of the research question. Thus, work by
Berry and Berry (1990, 1992, 1994), Mintrom (1994) and others who have
used discrete-time models for an otherwise continuous-time process are cor-
rectly and accurately modeling the time path of policy adoption. As another
example, the events of retirement and ambition for members of Congress
certainly can occur anywhere in time, however, these decisions are roughly
bounded, occurring near the onset of an election cycle (Jones 1994).

The adequacy of the discrete-time formulation largely hinges on the
scope of one’s research question. If data are only observed at discrete inter-
vals and transitions from one state or event to another can be approximated
by the discrete nature of the data with little loss of relevant information, then
the discrete-time formulation is likely to be a reasonable approach toward
modeling the process. More formally, the discrete-time approximation of a
continuous-time process improves if the intervals between observations are
small, i.e., they are only good approximations if the conditional probabilities
of an event at each period are small (Yamaguchi 1991).

An advantage of the discrete-time formulation is its ability to handle
“ties” (Yamaguchi 1991). Because data are often only gathered at researcher-
defined periods, the likelihood many units in the risk set experience an event
at the same time is high. Standard continuous-time event history models such
as the Cox model, cannot easily handle the problem of co-occurrence of
events (Arjas and Kangas 1992; Yamaguchi 1991). Estimation of the Cox
proportional hazards model on data containing many ties yields biased pa-
rameter estimates (a more detailed discussion of the Cox model is provided
in the section on continuous-time models). The discrete-time formulation
does not produce bias in the parameter estimates. Thus, if a researcher is
dealing with a continuous-time process but has data that are observed at
crude intervals, then use of the discrete-time formulation may actually im-
prove inferences made about the process.

The Discrete-Time Formulation

In discrete-time event history analysis, the statistical model is used to
derive estimates of the underlying hazard probability of a unit experiencing
an event. Whether or not a unit experiences some event is indicated by the
dependent variable. To illustrate the discrete-time event history estimator, let
us first consider the formulation of the hazard probability. Since an event
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can occur only at discrete times, it is assumed the probability of event T ex-
actly occurring at ¢ is observable. Therefore, the discrete time hazard prob-
ability is a straightforward expression:

M) =P(T=tIT>1) [17]

We use A(1) as the notation for the discrete-time hazard function to distin-
guish it from (), the continuous-time hazard function. It is useful to con-
trast [17] with [4], which is the continuous time version of the hazard rate. In
the discrete-time case, we make the assumption the event is observable (and
measured) at some exact point in time. Hence, the interpretation of A(¢) is
quite appealing. The discrete-time hazard may be interpreted as the prob-
ability that a unit experiences an event at ¢, given the event has yet to be ex-
perienced. The results we derived for A(z) in the previous section also hold
for A(¢).10

To this point, we have only thought about the hazard rate (or hazard
probability as it is properly called in the discrete-time case) as a function of
time; however, most researchers are interested in how the hazard probability
varies as a function of independent variables, or covariates. To account for
covariates, [17] can be reexpressed as the following: ‘

M) =P(T=tIT>t a,BX) [18]

The o term represents the baseline probability, i.e., the probability of an
event occurring when the covariates equal zero. The B'X term represents a
matrix of covariates and their associated parameters. A convenient feature of
the discrete time formulation lies in the fact that A’s are probabilities. In a
classic article, Cox (1972) demonstrated this probability can be parameter-
ized to have a logistic dependence on the covariates (including the baseline
parameter). To obtain logistic dependency, we rewrite [18]:

1
e [19]

From this result, we can place the hazard probability into the logistic form
by taking the logistic transformation on both sides of [19]:
1-A@)

This formulation illustrates the conditional log-odds of an event occurring
at ¢ is dependent both on the baseline term, 0, and the covariates, X. By

=o+p'X [20]

100f course in the discrete-time case, we no longer would use the calculus notation.



1426 Janet M. Box-Steffensmeier and Bradford S. Jones

expressing A(z) in this fashion, [20] is estimable with logit—a technique
widely used by political scientists. The discrete-time logit model, however,
differs in interpretation from traditional logit models. This differing inter-
pretation stems from the fact that the data used to estimate this model (or
any event history model) are duration data. Later in the paper, we focus on
interpretation of event history parameters.!!

The adequacy of the discrete-time logit event history model is solely
dependent on the process under study. As previously discussed, discrete-
time approaches are only feasible under two conditions. First, if change only
occurs at discrete times (on election day, for example), then the model illus-
trated in [20] may be the appropriate estimator. Second, if one is modeling a
continuous-time process, but the intervals of measurement are close, then a
discrete-time approximation is often an adequate approximation.'? Further-
more, as we will see in the next section, the distinction between discrete-
time and continuous-time models becomes more blurred when we consider
the parameterization of the baseline hazard.

Our discussion of the discrete-time model has been expressed in terms
of the logit estimator; however, estimation of the discrete-time event history
model may pe accomplished in a number of ways. Recent work by Sueyoshi
(1995) presents alternative estimation techniques for the discrete-time
model. Beck (N.d.) provides a nice discussion and overview of some of
these techniques. We also point the reader to recent works by Alt, King, and
Signorino (1996) and Beck and Tucker (1996) for examples and discussions
of estimation of the discrete-time model.

The Continuous-Time Formulation

When the times of events are not constrained to predefined periods, we
have a continuous-time process. Generally speaking, the dependent variable
in a continuous-time formulation of the event history model reflects the du-
ration or time spent in a social state. Consequently, the dependent variable is
most often thought of as a continuous random variable and is measured as
some metric of time.!3 The hazard rate for the continuous-time event history

liSee Allison (1982, 1984); Yamaguchi (1990); and Singer and Willet (1993) for a more de-
tailed discussion of using logit to estimate event history parameters.

12T see this, note that logit can be interpreted as a ratio of two odds: the odds of an event oc-
curring (i.e., the realization of a “1”) relative to the baseline odds of an event not occurring (i.e., the
realization of a “0”). As Yamaguchi (1991) notes, the ratio of two odds approaches the ratio of two
rates as the interval between observations gets smaller. Obviously, the antithesis to this is that if one
is trying to understand a continuous-time process but has intervals of observed data distantly or ir-
regularly separated in time, then the discrete-time logit model is probably inappropriate.

13Examples of a “time metric” may include days, months, or even years spent in some social
state until an event occurs (or until transition is made from one state to another). In some applica-
tions of continuous-time models, the time metric is measured in seconds or even finer-grained mea-
sures (see for example Robinson and Smith-Lovin 1990).
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model accounts for the fact that transitions can occur anywhere in time. We

have already presented the continuous-time hazard rate in [4], but it bears

repeating:

P(t+At>T>tIT >1)
At

h(t) = lim,,_, [21]

Again, the quantity A(z) reflects the instantaneous probability that a duration
or episode ends in the interval [¢ + At], given the duration has not terminated
prior to the beginning of the interval. Or analogously, the hazard rate can be
interpreted as the instantaneous probability that an event occurs given that
the event has not yet occurred.

The hazard rate can be modeled as a function of both a baseline rate, o,
and covariates. To account for covariates, we can reexpress the hazard rate
as the following:

Pit+At>T2tIT>t;0,p%

At [22]

h(t) = lim,

There exist a wide variety of estimators for [22]. The major issue involved
with the estimation of [22] (and [21] for that matter) involves the parameter-
ization (or nonparameterization) of the baseline hazard rate. To understand
this, bear in mind that the baseline hazard rate can be thought of as the time
path that durations follow if the effects of all covariates are zero. The base—
line hazard, then, reflects time dependence (or independence). Occasionally,
researchers have some idea of what the theoretical hazard function should
look like. For example, the hazard of human death is initially steep (at birth)
due to birth defects and infant diseases, the death rate then drops and flattens
out during childhood and early adulthood, and begins to rise as humans get
older due to cumulative wear and tear. Heckman and Willis (1977) find a
“bathtub shaped” distribution for the participation probabilities of women in
the labor force as well. This bathtub function indicates that the hazard rate is
not only time dependent, but follows some known distribution. By param-
eterizing the baseline hazard rate we can explicitly account for time depen-
dence. Parameterization means specifying a distributional form for the base-
line hazard. And to that end, there are numerous distributions to choose
from. We consider some of these distributions in turn.

The Exponential Model

We have already considered some of the properties of the exponential
distribution in our discussion of the hazard rate; however, some elaboration
on this distribution will be useful. If one parameterizes the baseline hazard
function as following the exponential distribution, the assumption being
made is that the hazard rate is invariant to time. Graphically, we would
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observe a hazard function as a flat line with an intercept equal to the hazard
rate. Time-invariant baseline hazards are commonly assumed, particularly
when one includes many covariates. The exponential model takes the fol-
lowing form:

h(t) = exp(Bo + BiX;) [23]

The baseline hazard in this model is tantamount to a constant term and is
represented in [23] as the B, term. The term B} X; represents a matrix of co-
efficients for the k covariates. Interpreting [23] is straightforward. When all
covariates are set to zero, the hazard rate is a constant, thus implying time-
invariance. All the “movement” of the hazard rate comes from the co-
variates. This model may be estimated by maximum likelihood. Many stan-
dard statistics packages can estimate the exponential model (see Appendix A
for a discussion of software).

The Weibull Model

A probability distribution that plays a central role in the analysis of
event history data is the Weibull distribution. The Weibull model is fre-
quently used by event history analysts because of the flexibility in specify-
ing different functional forms. One example of why, theoretically, a scholar
may use the Weibull model rather than the exponential model is if he or she
posits that the dependent variable shows time dependence. Specifically,
when studying the mortality (cessation or merger) of political parties, some-
one may posit that new organizations fail at higher rates than old ones. A
Weibull model would allow the mortality rate to vary by the age of the party.
Comparing the fit of exponential and Weibull models would allow one to
draw conclusions about the null hypothesis of age independence.

The hazard function for the Weibull distribution takes the following
form:

h(#) = hohr)* ! [24]

The terms are the shape parameters for the distribution. When o = 1, the
Weibull hazard is equivalent to the exponential hazard shown in [13].
Hence, the exponential distribution is a special case of the Weibull distribu-
tion. When « < 1, the baseline hazard rate is a strictly decreasing function.
When o > 1, the baseline hazard rate is a strictly increasing function.

The Weibull model is typically estimated in the following fashion:

h(t) = exp(B’X + o lnt) [25]
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The last term on the right-hand side of [25] represents the shape parameter of
the Weibull model and is estimated directly from the data. The coefficients,
B’X, in conjunction with o, can be interpreted as reflecting how covariates
increase or decrease the risk, or hazard, of experiencing an event at some
point in time. Because the shape parameter is estimated, one can use the
Weibull specification to test hypotheses about different “shapes” of the haz-
ard function. We present an application of the Weibull parameterization later.

Piecewise Constant Hazard Rates

A general method toward modeling the hazard rate is to model A(#) as a
so-called piecewise function. In stark contrast to the exponential model
where the baseline rate is time-invariant, treating A(f) as a piecewise func-
tion is tantamount to saying the hazard rate varies from time period to time
period. To estimate a piecewise hazard, one simply includes separate con-
stant terms for each z. Hence, the model would take the following form:

h(t) = exp(a, + B} X;) [26]

The term «, represents separate constant terms for each period . These pa-
rameters provide information on how the baseline hazard rate increases or
decreases per some defined time period.'* Clearly, the piecewise formula-
tion differs in an important way from the continuous-time models previously
discussed. In this formulation, the researcher is making the assumption that
the hazard rate is not constant across time intervals (as in the formulation
shown in Equation 23). Inclusion of time dummies captures this. The param-
eter estimates of these time dummy variables simply informs the researcher
on how the hazard function changes in the time interval captured by the in-
dicator variable.

Other Distributional Models

The distributions described will not necessarily provide a satisfactory
model for survival times in all circumstances. Any continuous distribution
for nonnegative random variables could be used, such as the normal (which
allows for negativity), log-normal, log-logistic, gamma, extreme-value, and
Gompertz distributions. We refer interested readers to sources such as
Kalbfleish and Prentice (1980), Cox and Oakes (1983), and Petersen (1985)
for further discussion of alternative parametric models. '3

4One advantage of this approach is that periodic heterogeneity is explicitly modeled. To that
end, this approach is roughly similar to Stimson’s (1985) notion of accounting for time effects.

I5Tn addition to the technical references cited, Cioffi-Revilla (1984) and Cioffi-Revilla and Lai
(1995) provide more graphs (theoretical and observed) than can be presented here.
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The Issue of Censored Observations

Each of the model specifications we have considered thus far all can be
estimated by maximum likelihood. Understanding the likelihood function
permits an understanding of how (right) censoring is accounted for in event
history analysis. Recall that observations remaining in the risk set at the time
of the last observation are considered right-censored. A regression model
implicitly makes no distinction between censored and uncensored observa-
tions (see Figure 1, cases three and four) and treating them as equivalent can
lead to biased estimates of covariates and incorrect inferences.

With maximum likelihood estimation, we account for censoring
through the likelihood function. Each observation, conceptually, can be
thought of as a “success” or “failure.” A failure would be any observation
that did experience the event (or had a duration that terminated) within the
observation period (that is, the event occurred and we observed it). A suc-
cess is any surviving observation, i.e., an observation not experiencing an
event within the observation period. Fortunately, we have already dis-
cussed two mathematical expressions that succinctly capture the notion of
failure and success: f(f) and S(¢). The likelihood for all uncensored obser-
vations (the “failures”) is f() for the distribution specified, while the likeli-
hood for all censored observations (the “successes”) can be expressed as
S(¢) for the distribution. So, for example, the contribution to the likelihood
of uncensored observations for the exponential distribution takes the fol-
lowing form:

fi=h-exph! [27]

and the contribution to the likelihood of censored observations for the expo-
nential distribution is the following:

S(t) =exp™? [28]

Hence, using maximum likelihood estimation provides some leverage on the
issue of censoring. Censored observations are treated differently from un-
censored observations, as they should be. Furthermore, all information on
the length of the duration is used with maximum likelihood estimation.
Thus, we avoid the problems associated with traditional regression-based
techniques.

The Issue of Heterogeneity

The parametric models discussed previously are based on an assump-
tion of homogeneity of the distributions of the dependent variable across
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individuals.'¢ Explanatory variables are included in the model to control for
heterogeneity. Control may be incomplete, however, if some explanatory
variables are inappropriately left out, the functional form is misspecified, or
when unobservable variables are important; thus the problem of heterogene-
ity arises. Gourieroux, Monfort, and Trognon (1984) show that if the as-
sumption of homogeneity is incorrect, the parameter estimates will be in-
consistent and/or inferences will be based on inappropriate standard errors.

The most common problem resulting from unobserved variables is that
the estimated hazard rate becomes biased toward negative duration depen-
dence (Heckman and Singer 1984a). The intuition can be illustrated by con-
sidering the topic of challenger entry in House races with an incumbent.
Suppose that hazard rates differ across incumbents, i.e., some incumbents
are more prone to failure (a challenger entering) than others. Of course, in-
cumbents with higher hazard rates tend to fail earlier, on average, than in-
cumbents with lower hazard rates. So the average hazard rate of the surviv-
ing incumbents will decrease over time (as the primary date approaches)
because those incumbents most failure-prone have been selectively re-
moved. This is true even if the hazard rate is constant for all incumbents but
the hazard rate varies across them.!”

There are two main solutions to addressing the problem of heterogene-
ity. Note first that the dependent variable in event history analyses can al-
ways be expressed as a sum of its mean and an error term, i.e., the hazard
rate equals e®X+3_The first of the two main solutions involves imposing a
specific distribution on u and is referred to as the random-effects procedure.
In the example above, it would mean imposing a specific distribution such
as normal, lognormal, or gamma, on failure-prone incumbents and a differ-
ent distribution for those not “vulnerable.”!8 In terms of estimation, one first
derives the likelihood for the observed history on an individual, conditional
on observed and unobserved variables. Then one uses the imposed distri-
bution of the unobservable to compute the mean of the likelihood when the

165ee Heckman and Singer (1984b) and Kiefer (1988) for a detailed discussion of heterogene-
ity, Hougaard (1991) for a discussion of the choices of distributions for the unobserved covariates,
and Vaupel and Yashin (1985), for an illustration of how two subgroups or strata within a population
can have dramatically different hazard rates, which can lead to a single misleading hazard rate for
the entire data set if not properly accounted for.

17See Proschan (1963) for a formal proof.

I8[f heterogeneity is suspected to be a problem, one should first try to incorporate individual
characteristics into the model, which should reduce the unobservable component of heterogeneity
and thus the arguments for a decreasing hazard rate due to heterogeneity (Tuma, Hannan, and
Groeneveld 1979). If the decreasing hazard rate is due to state dependence, including individual
characteristics will not remove a decreasing hazard rate. State dependence refers to actual change in
behavior over time, at an individual level.



1432 Janet M. Box-Steffensmeier and Bradford S. Jones

unobserved are not taken into account. This procedure is repeated for all in-
dividuals in the sample and then maximized.!?

The problem is that neither theory nor data provides much guidance for
imposing a specific distribution. Heckman and Singer (1984b, 1985) criti-
cize the imposition of a specific distribution and develop an estimator of the
hazard rate that is nonparametric with respect to the distribution of the dif-
ferent types. It appears, however, that their estimator is sensitive to the para-
metric form of the hazard chosen for the general model and to the number
and choice of explanatory variables.20

The second approach, the fixed-effects approach, treats | as a fixed
variable. The advantage of this approach is that few assumptions are im-
posed on W. The disadvantages, however, are that the fixed-effects approach
applies only to processes where the event is repeated over time, at least two
transitions have been observed on some of the observations, and only the ef-
fects of covariates that change over time can be estimated (so effects of race
or gender cannot be estimated).

Proportional Hazard Rate Models

The specification of the event history model has, to this point, dealt with
the issue of parameterizing time-dependency. The discussion of the Weibull
model shows that the hazard rate may take numerous monotonically increas-
ing or decreasing shapes. Distributions like the log-logistic or Gompertz
(among others) can elicit hazard functions that are both increasing and de-
creasing with respect to time. And of course, interpretation of covariates in
any of these types of models hinges on the shape of the hazard function. The
parameterization a researcher chooses for a particular process may have a
substantial impact on the inferences one makes about the process. Conse-
quently, estimating an event history model without having to specify or pa-
rameterize time-dependency would be useful.

The most commonly used model of this type is the Cox proportional
hazards model. Because of its widespread usage in social science, we
present an extended discussion of the Cox model.?! This model allows one
to estimate the effects of individual characteristics on survival time without
having to assume a specific parametric form for the distribution of time un-
til an event occurs. For an individual with a vector of characteristics, X, the
proportional hazards model assumes a hazard rate of the form:

19See Lancaster (1979) for elaboration.

20See Trussel and Richards (1985), Kiefer (1988), and Hoem (1990).

2lpolitical science examples include Bienen and van de Walle (1989, 1992) who investigate
leadership duration and Box-Steffensmeier, Arnold, and Zorn (1997) who look at the timing of stra-
tegic position taking by members of the United States House of Representatives.
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h(tlx) = hy(t)exp(BLX;) [29]

where h(?) is the baseline hazard function, which is estimated nonpara-
metrically due to Cox’s partial likelihood estimation; and where X, repre-
sents the covariate values that may depend on time as well.

The term “proportional hazards” refers to the effect of any covariate
having a proportional and constant effect that is invariant to when in the pro-
cess the values of the covariate changes. That is, each individual’s hazard
function follows exactly the same pattern over time, but there is no restric-
tion on what this pattern can be. To test the assumption that the effects of the
covariates are proportional, one can specify a particular functional form of
interaction effects between a covariate and time. The most straightforward
example would be including the explanatory variable x,, where x, = x,t and
where x, is already in the model. A test of the hypothesis that the coefficient
on x, = 0 is a test of the assumption of proportional hazards. Another ap-
proach to testing the proportionality assumption involves using a set of time-
varying dummy variables to contrast distinct time segments against the
baseline segment (Yamaguchi 1991, 107). By interacting covariates with the
dummy variables, we can see if proportionality holds over time. The signifi-
cance testing can be assessed with chi-square tests.??

The model with time-varying covariates, often referred to as a Cox re-
gression model, is an extension of the proportional hazards model developed
by Cox (1972, 1975). Since the values of the variables, x(#), vary over time
t, so does the relative hazard, h(t)/hy(¢). This means that the assumption of
proportional hazards no longer holds (Collett 1994, 224). A simplified
model with two explanatory variables, one constant and one varying over
time, may be written:

h(t) = hy(t)ePrxi+B2x2(® 030]

In this model, the hazard at time ¢, A(¢), depends on the value of x, at the
same time ¢.

Cox regression models do not have constant terms. Instead the constant
is absorbed into the baseline hazard. Signs of the coefficients from a hazard
rate model indicate whether some particular variable increases or decreases
the hazard rate. The standard errors can be used to determine statistical
significance, i.e., test statistics calculated by dividing a coefficient by its
standard error, as in the more familiar ordinary least squares context. To

22See Yamaguchi (1991) and Box-Steffensmeier and Zorn (1996) for further discussion of
these approaches and Gill and Schumacher (1987) for an alternative test based on a comparison of
generalized rank estimators of the relative risk.
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understand the magnitude of the effect, the percentage change in the risk of
experiencing the event is useful. For a dichotomous independent variable,
the percentage change in the risk of experiencing the event is:

1()()[3(&*1) — B *0)]/ (B *0) [31]

Negative coefficients produce values of e®«*D that are less than one, and
therefore produce negative percentage changes. The interpretation for a con-
tinuous independent variable is similar:

100[e®s*(x+8) — B x0)]/ gBi*o) [32]

This gives the percentage change in the hazard rate for a 6 unit change in the
independent variable, x.2

Yamaguchi (1991, 102-3) outlines four disadvantages of the Cox
method that users should be aware of and thus we repeat them here. First,
the precision of the parameter estimates compared to those of maximum
likelihood can be much less when the sample size is small because Cox’s
method only uses information about the relative order of durations. Thus,
this method should not be used with small samples. Second, ties, which oc-
cur when more than a single observation exits at the same time, are problem-
atic because only the order matters, not the exact numerical values of the
failure times or of the censoring times. Computer programs employ a stan-
dard approximation to the exact partial likelihood for generating results
since the exact partial likelihood is inestimable in the presence of ties.
Prentice and Farewell (1986, 14) state that as a rule of thumb, if no more
than 5% of the observations fail at one time the resulting bias is not a con-
cern. If more than 5% of the observations are tied, Yamaguchi (1991, 103)
suggests using maximum likelihood methods with discrete-time models.
Third, if there is interest in the form of time-dependence, this is not the ap-
propriate method. Fourth, Yamaguchi points out that users should realize the
theoretical foundations for the maximum likelihood method are stronger
than those of the Cox model. Specifically, “although the major asymptotic
properties of parameter estimates are known [for the Cox model], caveats
are necessary for the procedure of model selection” (Yamaguchi 1991, 103).
Recently, Sueyoshi (1992) has developed an alternative semiparametric es-
timator for duration data that avoids the problems with ties and uses maxi-
mum likelihood estimation. Diermeier and Stevenson (1994) discuss and ap-
ply this method to political data.

23§ee Namboodiri and Suchindran (1987) and Teachman and Hayward (1993) for further
elaboration.
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The Issue of Model Construction

To help choose among the parametric models, it is useful to fit the Cox
model and examine the shape of the baseline hazard function in addition to
examining one’s theory for guidance. If a specific shape is suggested, a para-
metric model may be suitable because the estimated parameters would be
more precisely estimated (Collett 1994). Hazard plots will be useful here.
Political science theories may not provide specific guidance about what par-
ticular distribution is needed to relate observable covariates to rates of
events. Instead, scholars typically choose basic, tractable distributions that
agree qualitatively with the substantive arguments (Hannan 1989, 357).

Recall that the exponential model is a special case of the Weibull with
the scaling parameter, which indicates the shape of the failure time distribu-
tion, set to one. Therefore, a test of the exponential model versus the Weibull
model is to fit a Weibull model and see if the value of the parameter is sta-
tistically distinguishable from one. Choosing between other parametric
models is not as clear. The fit and coefficients for each of the models should
be compared.?*

In nonlinear models with explanatory variables, the chi-square test for
the joint hypothesis that all coefficients besides the constant are zero gives
an indication of how much the explanatory variables jointly contribute to the
fit of the model. The chi-square statistic is analogous to the F-statistic in a
linear regression model. A high chi-square value does not mean, however,
that the model is not satisfactory. Residual plots and diagnostics are more
helpful here.

Residual analysis, which is an informal method of checking specifica-
tion, helps to assess a chosen specification, just as in the linear regression
model. Residual plots show departures from a hypothesized model and may
suggest ways to improve the specification. Another assessment tool for
specification is to split the sample based on values of the explanatory vari-
ables and estimate the model separately between groups. If the specification
is correct, the estimated parameters should agree up to the estimated error.

Checking for unobserved heterogeneity is also advisable. For example,
since the vulnerability of incumbents (in terms of having a challenger enter)
could differ due to variables not included in the model, such as scandals or
the incumbent’s position on his or her career path (see Jones 1994), account-
ing for unobserved heterogeneity could be important.

One advantage of parametric models is predicting what will happen be-
yond the “follow-up” period of the data. For example, in studies of when
states enact a particular law, it is useful to be able to predict which states

2*Hannan (1989) provides an excellent discussion of choosing among distributions and their
fit. Chung, Schmidt, and Witte (1991) is also useful.
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may do so beyond the time frame of the observation period. Another advan-
tage of the parametric models is that it smooths the data; the disadvantage is
that it can be the wrong model.

Among the models that use time-varying covariates, the Cox regression
is usually the preferred model. Collett (1994) points out that discrimination
between a Cox and Weibull model is difficult. If the standard errors for the
Weibull are substantially smaller than those for the Cox model, the Weibull
model would be preferred because of efficiency. If the standard errors are
similar, the Cox model is preferred because of its less restrictive assumptions.

Complicated Events in Event History Analysis

Sometimes, political or social processes involve complicated event
structures. In this section, we consider the special case where an event may
be repeatable as well as the issue of multiple events, or competing risks.

Repeated Events

Up to this point we have discussed only single-state nonrepeatable
events. That is, there is a single-state that can be occupied only once, i.e.,
entry into the first elected political office held (provided one does not distin-
guish between different offices such as state representative, mayor, etc.). We
now turn to repeatable event processes, which means an individual can oc-
cupy a state several times.?® Political office holding histories fall within this
class of processes. Researchers would focus on the amount of time an indi-
vidual spent in each political office (not just the first political office held and
still not distinguishing offices). That is, consider an individual who had held
m political positions with durations t, t,, . . ., LTS, where the last dura-
tion may be censored.

There are two procedures to specify the hazard rate of leaving political
position j. First, one assumes that the shape of the rate and parameters of
the rate are the same for all positions. Dependence on previous history may
be captured with explanatory variables. All the jobs of each individual can
be pooled, and the parameters from the data on all of the jobs can be esti-
mated. Second, one assumes that the rate and its parameters differ from po-
sition to position, or at least between subsets of positions, such as early po-
litical positions and late political positions. So if we think that the hazard
rate and its parameters vary between jobs, depending on, for example, posi-
tion number (first, second, and so on), then we need to estimate the param-
eters separately for each position number. The parameters for position j are

25See Hannan (1989) for a more detailed discussion and Olzak (1987, 1989) for applications of
repeatable events.



EVENT HISTORY MODELS IN POLITICAL SCIENCE 1437

estimated from the durations in position j.2¢ To do either estimation, the
data are arranged such that there is one record of data for each position an
individual held.?’

Competing Risks Models

In competing risks problems, an individual may fail because of two or
more reasons, e.g., leaving the Senate by retirement, defeat, or death in office
(Jones 1994); government transition due to a call for new elections, vote of
no confidence, coup, etc. (see Alt and King 1994; King et al. 1990; and cita-
tions therein for applications concerning government transitions). Most of
the time in a competing risks framework, the occurrence of an event means
that there is no longer a risk of experiencing another event(s), assuming that
the causes are mutually exclusive.?® Chung, Schmidt, and Witte (1991) pro-
vide a concise, intuitive statement about what competing risks models are:
“The competing risks model is designed to provide estimates of the effects of
explanatory variables on the cause-specific hazard functions, so that the ef-
fect of a variable on the timing of one type of failure can be distinguished
from its effect on the timing of other types of failures” (1991, 90).

Chung, Schmidt, and Witte (1991) go on to state that the important fea-
ture of competing risks models is that the likelihood function factors into a
separate component for each type of failure (1991, 91). The particular pa-
rameterization of the hazard can be any of those discussed above, e.g., Cox
model, log-normal, or Weibull. When assuming that events are mutually ex-
clusive, the estimation is straightforward since every other type of event is
treated as censoring.?’ Namboodiri (1996) states this more clearly, “. . . a

26See Petersen (1991) for further elaboration and Blossfeld and Hamerle (1989) for an
example.

2TNo assumptions about independence between positions on the same person are made.

28Namboodiri (1996) points out the following contrasts. First, an individual may continue to be
at risk of experiencing another event, e.g., the risk of a challenger from Party B entering continues
even after a challenger from Party A enters in a multi-party system. Second, an event may occur and
the individual may no longer be observed even though the individual may be at risk for another com-
peting risk. Namboodiri (1996) provides an example of migration to illustrate this situation. If one
is studying internal migration within a Latin American country and the individual leaves the country
(international migration), the individual is still at risk of internal migration within the new country
he or she migrated to, but the researcher is unlikely to be able to study this individual further. Third,
an individual may experience one event but this may not affect the risk of any other event or affect
whether the individual will continue to be observed. Finally, if an individual experiences one event,
it may affect the hazard rate of experiencing other events, e.g., a small incumbent victory margin in
the past election may enhance the hazard rate of defeat.

2See Han and Hausman (1990) for their development of a flexible parametric proportional
competing risks model that permits unrestricted correlation among the risks, Sueyoshi (1992) for ex-
tensions to include time-varying covariates, and Diermeier and Stevenson (1994) for an application
in the area of cabinet duration. Work by Hill, Axinn, and Thornton (1993) examines the assumption
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crucial question is whether a different set of regression parameters is appro-
priate for each cause of failure. If it is, each cause of failure can be analyzed
separately, by treating all failures other than the focal one as being censored
times. If the occurrence of one of the competing events affects the hazard
rate of experiencing another event, then the former should be entered as a
time-varying covariate in the model for the latter.”

Interpreting Event History Models

Parameters in event history models provide considerable information
about the risk that units incur as they progress through time. As we have al-
ready discussed, estimation of baseline hazard rates yields some notion of
how a social process is or is not time-dependent. Furthermore, the baseline
hazard gives us some idea of when in time observations are most at risk. For
many applications, however, time-dependency may not be of primary con-
cern. Often we are most interested in how external factors, or covariates,
amplify or dampen the risk of experiencing an event. To use a substantive
example, we may be less interested in the time-dependency of the duration
of overt military interventions than we are in learning how factors like de-
pendency or intervenor power accelerates or decelerates the hazard rate. To
that end, researchers need to take care in substantively interpreting event
history parameters for covariates.

Typically, we think of two kinds of covariates: time-varying and time-
invariant. Examples of the latter generally involve demographic factors such
as race, gender, or geographic region. However, any covariate can be
thought of as time-invariant if its value does not change over the course of
the duration. Consequently, the partisanship of a Congress member, depen-
dency status of a state, or other political variables that can change, but gen-
erally do not change, are often treated as time-invariant factors. Parameter
estimates for such factors represent how the relative risk of experiencing an
event increases or decreases for a unit that possesses the attribute the
covariate is measuring.

This enhancement or diminution of the hazard rate is generally treated
as relative and proportional to the baseline hazard rate. The proportionality
interpretation means that the hazard rate’s increase (or decrease) due to the
value of some covariate is proportional to the baseline hazard by the value of

that alternative risks are stochastically independent, which rules out individual-specific unmeasured
risk factors that are shared by two or more alternatives (referred to as SURF). They then develop and
apply a generalized standard discrete-time competing risks model that allows for the types of sto-
chastic dependencies resulting from SURF. Their Monte Carlo work suggests that the biases intro-
duced by violations of the temporal independence assumption primarily affect time-varying
covariates (Hill, Axinn, and Thornton 1993, 245-6). See also Crowder (1991), Bagai and Rao
(1992), and Kuk (1992) on the well-known problem of identifiability in competing risks.
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the covariate. This proportionality is treated as constant across time unless
one hypothesizes (and of course models and tests) interactions of the co-
variate with the baseline hazard function, which was described previously.
To illustrate this point with a pedagogical example, suppose we estimated an
event history model using logistic regression (see Equation 20) and obtained
a parameter of —1.5. Because the metric of the logit estimator is in terms of
log-odds, the interpretation of this number would be that the log-odds of ex-
periencing an event at ¢t would be proportionately lowered by —1.5*X. When
X = 0, the baseline hazard rate would be obtained (assuming only one co-
variate was included in the model). When X = 1, the log-odds of the baseline
hazard would decrease by 1.5. Furthermore, this proportional decrease
would be constant across time. That is to say, at any ¢, the log-odds of the
hazard would be lowered by —1.5.

The use of time-invariant covariates can provide considerable insights
on social processes. The parameters of such covariates generate novel infor-
mation by giving us an estimate of how risk varies by demographic, politi-
cal, or social characteristics. The researcher must take care in interpreting
such covariates. Since the data reflect an underlying longitudinal process,
parameter estimates for covariates reflect how risk increases or decreases
across time for some units relative to other units. The inclusion and interpre-
tation of time-invariant covariates provide no special analytical problems for
event history analysis. Inclusion of time-varying parameters, however, leads
to more complex modeling and interpretation.

As the name suggests, a covariate is time-varying if its value can change
across time. For example, campaign spending in congressional elections is
not time-invariant. Other examples might include public opinion measures,
fatalities in military conflict, or economic indicators. Interpretation of time-
varying covariates involves considerable care. As for time-invariant co-
variates, time-varying covariates reflect how the hazard rate changes as the
values of the covariates are realized; however, unlike time-invariant param-
eters, the effects of time-varying parameters are substantially influenced by
when in time the value of a covariate changes (Teachman and Hayward
1993). To understand this, note that the hazard rate is discontinuous at the
point at which the value of the covariate changes (Teachman and Hayward
1993). That is, after experiencing a change in the value of some covariate,
the hazard rate increases or decreases proportional to the parameter value of
the covariate. This process of change is also called a jump process (Petersen
1991). The hazard “jumps” by some amount at the point the covariate
changes value. So, for example, if by becoming a chair of a House commit-
tee, the likelihood diminishes for a House member to leave the House to
seek higher office, then the hazard of political ambition drops by some
amount. Once the hazard jumps to a new level, however, that rate remains
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proportional across time until the unit experiences another change in the
value of the covariate. This is a major distinction between varying and in-
variant predictor variables. Time-invariant parameters reflect change that is
constant and proportional across all time periods. The change exhibited in
the hazard rate for time-varying parameters is only “in effect” for the time
periods in which the given level of the covariate is realized.

Obviously, inclusion of time-varying predictors can generate novel con-
clusions about longitudinal processes by providing estimates of how risk
moves as conditions in the process change. Nevertheless, researchers using
time-varying parameters must understand that interpretation is conditional
on the value of the covariate at any time point, and further, that the hazard
rate may be highly variable, particularly if conditions rapidly change over
time. Another obvious implication of the inclusion of time-varying param-
eters involves the structure of the event history data set. If time-varying pre-
dictors are used, each unit in the sample will necessarily have multiple
records in the data file. Traditionally, this involves collecting observations
on each unit in time and measuring and recording the value of the covariate
at each time point. Consequently, the dependent variable becomes a series of
zeroes, denoting the nonoccurrence of an event for a unit, culminating in a
one when the duration is terminated. As we noted earlier, this form of the
dependent variable is what Petersen (1991) calls the event history approach.
‘We now turn to some applications of event history models, which more fully
explore the basic ideas of interpretation discussed in this section.

Applications of Event History Models

In this section, we present three distinct applications of event history
methodology. The first application involves the duration of overt military in-
terventions using a Weibull model with one time-invariant covariate. In the
second application, a Cox regression model of challenger deterrence in
House elections is presented. The final application involves estimation of a
discrete-time, competing risks event history model of congressional careers.

Duration of Overt Military Interventions: A Weibull Model

At issue in this application is modeling the hazard rate of overt military
interventions (OMIs). An OMI is military intervention by one state into an-
other independent state, dependent country, or region (see Tillema 1991, for
a fuller discussion of OMIs). An OMI may last a single day or last several
thousand days (such as Vietnam). The question we address is, do OMIs ex-
hibit time-dependency, and if so, what is the form of that dependency? The

30See Teachman and Hayward (1993) for further discussion of interpreting event history
models.
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data set used in this application involves all OMIs from 1945 to 1991.3! The
dependent variable is the duration of the OMI measured in days. A single,
time-invariant predictor variable is included in the model. The variable, de-
noted as “dependency status,” is a binary variable coded 1 if the occupied
target is dependent upon another state and 0 if not. A Weibull model was se-
lected for this application. Recall from our earlier discussion that a Weibull
model is a flexible method for modeling the shape of the hazard function.
Additionally, we can include covariates and estimate a Weibull regression
model. The parameter estimates and standard errors are presented in Table 1.

Two columns of parameter estimates are presented for the Weibull
model. Typically, Weibull estimates are presented in terms of one of two
parameterizations. The first type of parameterization is known as the “accel-
erated failure time” parameterization. This parameterization is shown in col-
umn 2. The second type of parameterization is known as the “relative haz-
ard” parameterization. This parameterization is presented in column 3. The
relative hazard parameterization simply reflects a mathematical transforma-
tion of the accelerated failure time parameters. To see this, let B correspond
to the accelerated failure time parameters, B* correspond to the relative haz-
ard parameterization, and ¢ correspond to the inverse of o, the scaling pa-
rameter of the Weibull distribution (see Equation 24).32 The B parameters
are obtained by dividing the 3 parameters by —q, that is —(/0).

Because the two parameterizations differ, the interpretation of a Weibull
model is contingent on which parameterization is employed. Roughly speak-
ing, the accelerated failure time parameterization presents coefficients in
terms of their relationship to expected failure times. A negative sign on a co-
efficient using the accelerated failure time parameterization implies that the
duration is “shortened” by some value per unit change in the covariate. That
is, the expected time-to-failure is sooner rather than later. Consequently, it is
important to note that a negative coefficient implies an increase in the hazard
rate, while a positively signed coefficient implies a decrease in the hazard. In
terms of the OMI data, we see from column 2 in Table 1 that the coefficient
for dependency status is .39. This positive and significant coefficient simply
suggests that interventions into targets that have dependency status tend to last

3IData on OMIs comes from Tillema (1991, 1994).

32Note that the ¢ parameter and o parameter are simply the inverse of one another. That is 6 =
o' and o = 6~!. Consequently, when o > 1 then ¢ < 1. Both results indicate a monotonically in-
creasing hazard. When o < 1 then 6 > 1, thus implying a monotonically decreasing hazard. Obvi-
ously, when o = 1 then 6 =1 and the exponential model is obtained. Statistical programs like SAS’
Proc LIFEREG report the scaling parameter in terms of ¢ and the default coefficients are expressed
in terms of the accelerated failure time parameterization. STATA allows computation of either the
accelerated failure time parameterization or the relative hazard parameterization; however, STATA
presents the scaling parameter in terms of 6.
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Table 1. A Weibull Regression Model of OMI Duration

Dependent Variable: Duration of OMI (measured in days)

Accelerated Relative

Failure-Time Hazard Exponential Model
Parameter Estimates Estimates Estimates
Duration Dependence 0 =237 (07 o=.42(.07)
Constant (Bg) 5.37 (.10) -2.27 (.04) 6.33 (.04)
Dependency Status (;) .39 (.23) -.17 (.10) 40 (.10)
Log-likelihood: -1675 -1675 =2277

N =690

Note that o= 42 s0 6 = .4271.
Estimates are maximum likelihood estimates of a Weibull and exponential duration model. Standard
errors are in parentheses. Data are from Tillema (1991, 1994). See text for interpretation.

longer (i.e., the hazard is decreased) than interventions into nondependent tar-
gets. Or similarly, OMIs into nondependent targets “fail” sooner than OMIs
into dependent targets. If we exponentiate the parameter estimate (%), a
natural interpretation of the coefficient is found: OMIs into dependent targets
“survive” about 48% longer than OMIs into nondependent targets.

If one presents the coefficient estimates in terms of the relative hazard
parameterization, the interpretation of Weibull coefficients differ. Here the
values of the coefficients are expressed in terms of the baseline parametric
hazard and do not reflect expected failure times (as in the case of the accel-
erated failure time parameterization). Consequently, a negatively signed co-
efficient reflects how “much longer” the duration will last relative to the
baseline hazard. So in the case of the relative hazard parameterization, a
negatively signed coefficient implies a decrease in the hazard while a posi-
tively signed coefficient implies an increase in the hazard. Turning again to
Table 1 and looking at the third column of estimates, we find that the coeffi-
cient for dependency status is —17. This negatively signed coefficient sug-
gests that the hazard rate for OMIs into dependent targets is decreased rela-
tive to the baseline hazard of OMIs into independent targets. Or to put it
another way, the failure rate of OMIs into dependent targets is 85% of the
failure rate of OMIs into nondependent targets.

We now focus on interpreting the scaling parameter. Recall that the scal-
ing parameter estimated in the Weibull models provides us with information
about the shape of the hazard function. If o > 1, the hazard is monotonically
rising, if o < 1, the hazard is monotonically decreasing, and if o = 1, the haz-
ard is flat, thus implying an exponential distribution. The coefficient for the



EVENT HISTORY MODELS IN POLITICAL SCIENCE 1443

scaling parameter shown in Table 1 is .42, indicating the hazard rate of
OMIs is a decreasing function of time. The null hypothesis of interest in this
instance is that o = 1. A test of this hypothesis can be conducted by using the
following formula (Blossfeld, Hamerle, and Mayer 1989, 240):

a-1

=1 (33]

We see that applying [33] yields a z = —8.29. This value is significant be-
yond the .05 level and we can safely reject the null hypothesis. However, of
greater interest is the substantive interpretation of o. One issue we can ad-
dress is how the “risk” of terminating an OMI changes with respect to time.
A convenient way to do this is to assess how the magnitude of the hazard
rate changes for different points in time. The logic of this analysis is to
evaluate the hazard rate at one point in time and compare it to the hazard rate
at some later point. So, for example, suppose we wanted to compare the
baseline hazard for an OMI that has lasted 100 days with an OMI that has
lasted one thousand days. The following equation establishes how we evalu-
ate the hazard rate at a specific duration (denoted as d):

Wit =d)=expr-a-(exps - d) [34]

In this equation, d can be set to any duration time. To determine the percent-
age increase or decrease in the hazard rate across two points in time, the fol-
lowing equation can be used:

-100% [35]
h(t = d;)

In our application, we see the value of o = .42 and the coefficient for B, =
—2.27 (using the relative hazard parameterization estimates from Table 1,
column 3). To compare the hazard rate for OMIs with a duration of 100
days to OMIs with a duration of one thousand days, we first substitute the
relevant numbers into [34] to derive the individual hazard rates. For dura-
tions of 100 days, we find that [h(t = 100) = .0045 - .42 - (.0045 - 100)~8 =
.003]. For durations of one thousand days, we find that [h(t = 1000) =
.0045 - .42 - (.0045 - 1000)~8 = .0008]. Substituting these figures into [35],
we obtain [(.0008 — .003)/.003 - 100% = -73%]. Substantively this means
that for a nation or state that has been involved in an OMI for one thousand
days, it is 73% less likely to terminate the intervention than a nation or state
involved in an OMI for 100 days.

In Table 2 under the column “Percent Change in Baseline Risk,” we ex-
amine how the risk of ending an OMI diminishes as time passes. Once an
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OMI achieves a duration of one year, a nation is about 30% less likely to
terminate the intervention than it would with a duration of six months. Com-
paring OMIs of one versus three years, we see the risk of termination dimin-
ishes by about 47%. Substantively, this is a potentially interesting conclu-
sion. This analysis indicates that once a country becomes enmeshed in a
military intervention, terminating the intervention progressively becomes
more and more difficult. From a foreign policy perspective, the debate on
whether to intervene in another country or not is obviously a politically ex-
plosive matter. Taking the United States as an example, in recent years, we
have observed ambivalence toward military interventions in Somalia, Haiti,
and Bosnia on the grounds that once troops are sent, extraction of them be-
comes difficult. Congressional leaders have expressed fear that a sort of
“Vietnam syndrome” will inevitably emerge. These results, admittedly pre-
sented here for pedagogical purposes, provide some initial estimates of the
“Vietnam syndrome.”3? Once nations become extricated in another nation or
state, the difficulty of terminating the intervention increases over time. We
should not be surprised that when the president or congressional leaders as-
sure the public that an intervention will only last six months or a year, it is
common for the intervention to extend far beyond the initial ending date.
However, what time-dependency actually means is not so clear-cut from
a statistical point-of-view. As Beck (N.d.) notes, time-dependency or dura-
tion-dependence frequently indicates an inadequately specified model. That
is, if we could account for the covariates that are related to increasing or de-
creasing duration, then in principle, duration-dependence would “disap-
pear.” In this sense, duration-dependence is really a nuisance and the re-
search question requires further investigation (Beck N.d.). So should we
forgo the Weibull model in favor of, say, an exponential model where the
parameterization of duration-dependence yields no dependency? The an-
swer is simply “no.” Since the exponential model is a special case of the
Weibull, the test of the null hypothesis that o = 1 is analogous to testing
whether or not the exponential model is the “appropriate” model. Clearly, in
this simple, pedagogical example, we prefer the specification of the Weibull
distribution over the exponential. In Table 1 in the fourth column, we pre-
sented the results of the OMI model using the exponential model. Clearly,
the coefficient estimates of the constant term and of the dependency status
variable are roughly similar to the accelerated failure time parameterization.
We find, for example, that OMIs into dependent targets tend to last about
49% longer than OMIs into nondependent targets (e*°). This inference is

3BClearly, there are concerns aside from troop extraction that lead to decisions to intervene
militarily. We are only noting that the concerns about extracting troops is a legitimate and empiri-
cally demonstrable concern.
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Table 2. The Effect of Time on
the Termination of OMIs

Duration %A Baseline Risk
6 Months vs. 1 Year -33
1 Year vs. 2 Years -33
1 Year vs. 3 Years 47
1 Year vs. 4 Years -55
1 year vs. 5 Years -61

The second column reflects the percentage change in the
hazard rate of OMI termination for one duration time vs.
another duration time (i.e., OMIs lasting one year are
33% less likely to terminate than OMIs lasting six
months). These percentages were calculated using the
relative hazard parameters shown in Table 1, column 2.
Data are from Tillema (1991, 1994).

quite similar to that made from the Weibull; nevertheless, if we were to
choose which specification is appropriate, we would select the Weibull be-
cause the scaling parameter significantly departs from 1.

Challenger Deterrence: A Cox Regression Model**

The key to using parametric models is to have a sound idea of the distri-
butional nature of the hazard function. In the previous pedagogical example,
we made the assumption that shape of the hazard function is a monotonic
function of time, and hence, the Weibull model was a good estimator. Had
we specified another distribution that could elicit a nonmonotonic hazard
function, then the parameter estimates may have been widely different. Re-
searchers often cannot specify the distributional parameterization of time-
dependency and thus use non or semiparametric methods of estimation, such
as the Cox model.

The Cox model with time varying covariates is applied to the problem of
challenger entry. The issue is whether war chests (campaign finance reserves)
deter challenger entry. Time-varying covariates are critical because they al-
low the temporal dynamics of war chests to be incorporated into the model.

Table 3 shows the estimation results of a Cox’s regression model with
time-varying covariates in which an event is defined as the entry of a high
quality challenger. The overall fit of the model is good; we may reject the
null hypothesis that the coefficients are jointly zero at the 0.001 level. The
signs of the coefficients tell us that incumbents from the South are more

34This is taken directly from Box-Steffensmeier (1996).
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Table 3. Factors Influencing the Timing of Entry
by High Quality Challengers

Percent Change in

Variable Coefficient P-value the Hazard Rate

South —0.44 0.30 -35.5
0.42)

Party 0.23 0.47 264
(0.32)

Prior Vote -6.97 0.00 -6.7
(1.66)

War Chest -3.01 0.03 -26.0
(1.39)

Note: Units for the war chest variable in the third column is $100,000 and for prior vote, 1%.
Log-likelihood = -197.39

Chi-Square(4) = 34.11

(p <0.001)

N =397

likely to enjoy a race without a high quality challenger for a longer time pe-
riod. Republican incumbents are also more likely to not face a high quality
challenger early on. Finally, having a large war chest and prior vote margin
helps deter high quality challengers. Only the war chest and prior vote vari-
ables are statistically significant, thus the subsequent discussion focuses on
the interpretation of these two variables.

The fourth column of Table 3 shows the percent change in the hazard
rate. The results tell us that for a 1% increase in the prior vote, the hazard
rate decreases by almost 7%. That is, the percentage change in the hazard of
challenger entry at any time t for two incumbents whose war chests differ by
1% in prior vote and who have the same values for the other independent
variables is approximately 7%. A one standard deviation increase in the
prior vote, which is 14.2%, decreases the hazard rate by 62.9%. A 5 and 10%
increase results in a 29.4 and 50.2% decrease, respectively.

Each $100,000 increase in an incumbent’s war chest decreases the haz-
ard of a high quality challenger entering by 26%. That is, the percentage
change in the hazard of challenger entry at any time t for two incumbents
whose war chests differ by $100,000 and who have the same values for the
other independent variables is 26%.35 A one standard deviation increase in

35The effect of a time-varying covariate, X,(t), on the overall survivor function depends on
when the change with respect to the status of x, occurs. The intuition is straightforward; the earlier
the increase in the incumbent’s war chest occurs, the larger the effect is on the overall probability of
not having a high quality challenger enter.
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an incumbent’s war chest, which is $239,000, results in a 51.3% decrease
in the hazard rate. The effect of the increase in the war chest is nonlinear.
For example, if the increase is $100,000, the hazard rate decreases 26%; if
the increase is $200,000, the hazard rate decreases by 45%. So this
$100,000 differential increase ($200,000 — $100,000) results in a decrease
of 19% (-45.0% — (-26.0%)). In contrast, a $100,000 differential increase
between $900,000 and $1,000,000 results in a decrease of only 1.8%
(-95.1% - (-93.3%)). Thus, there are diminishing returns.

Incorporating the dynamics of war chests through the use of event his-
tory methods allowed us to measure empirically a previously elusive effect.
It is important to look at the effect of incumbents’ war chests on the entry of
high quality challengers because the size of an incumbent’s war chest is con-
trollable to the extent that additional effort results in a larger war chest and
because incumbents can control the size of their war chests to a much
greater degree than the other covariates in the model.

Congressional Careers: A Competing Risks Model

In this section, a discrete-time, competing risks model is applied to the
problem of Congressional careers: how, when, and why do incumbent mem-
bers of the House of Representatives exit office? Full or near-full career path
data were collected on every member of the House from each freshman class
elected from 1950 to 1976.36 Each incumbent in the data set was tracked
from his or her first reelection bid until his or her last term served in office.
A member initially elected in 1950, then, does not enter the risk set until the
election cycle of 1952. At each subsequent election, the incumbents are ob-
served and either experience a terminating event or are reelected. Once a ter-
minating event is experienced, the incumbent exits the risk set and is no
longer observed. All election cycles from 1952 up to and including 1992 are
covered in this data set. The last freshman class on which data were col-
lected was 1976. This decision was made in order to avoid severe right-cen-
soring problems.

Two competing risks models are estimated in this application. The first
models the risk of voluntary career termination in the United States House.
The events in this competing risks model are the decision to retire and the
decision to seek alternative office (denoted as “ambition” in the tables).
Both of these outcomes are compared to the baseline category of running for
reelection. Hence, the dependent variable in this model is trichotomous: 0 =
seek reelection, 1 = retire, and 2 = higher ambition. The second competing
risks model investigates electoral success. Given an incumbent has decided

36 The core data set used to construct the events history of incumbent members is the Roster of

U.S. Congressional Officeholders. Additional data were added to this core data set (see Jones 1994
for a fuller explanation).
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to run for reelection, was he or she successful? The outcome variable in this
model is also trichotomous, where O = winning the election, 1 = losing in the
general election, and 2 = losing in the primary election. Traditionally, schol-
ars have ignored House primary elections because not much occurs in these
types of races. That is, incumbents virtually always win. As we will see,
however, with the event history parameters, we obtain estimates of the risk
certain profiles of incumbents incur in House primaries. Obviously, the elec-
toral outcome model is “nested” within the first model: in order to win or
lose an election, you first have to enter the race. Thus, the two processes
were modeled separately.3’

Several covariates are used as predictors of career termination. Because
the purpose of this application is to illustrate a variant of the competing risks
models, we leave it to Jones (1994) for a fuller explanation of the covariates.
The following covariates are included in the competing risks models:

Duration: the duration of time (measured as terms served) the incum-
bent has spent in Congress prior to the election cycle.

Incumbent Age: the incumbent’s age (in years) at each election cycle.

Southern Democrat Status: two binary covariates are used to indicate
southern Democrats. The first, denoted as S. Dem. Before 1970 is coded 1 if
an incumbent was a southern Democrat prior to 1970, and 0 if the incumbent
was not. The second, denoted as S. Dem. After 1970 is coded 1 if the incum-
bent was a southern Democrat after 1970, and O if not. The inclusion of
these covariates is used to model the changing nature of southern politics
during and after the Solid South Period.3?

Post 1966 Cohort: a binary indicator denoted as 1 if the member was
elected in the freshman class of 1966 or after, and O if the incumbent was
elected prior to 1966. The aim of this variable is to capture the effects of the
increased perquisites of office incumbents allocated to themselves begin-
ning in the mid-Sixties (Jacobson 1992).3°

Prior Vote Margin: the incumbent’s margin of victory in his or her pre-
vious election.

Redistricting: this is a binary variable coded 1 if the incumbent’s district
was substantially redistricted, and 0O if not.

37We do not formally estimate a nested model in this application (in this sense of a nested
logit). The estimators used here are two separate multinomial logits.

380bviously the Solid South did not discretely cease to exist in 1970. Rather, the change was
gradual through the early 1970s and even into the 1980s. This measure is clearly a crude, but as we
shall see, effective way to capture these changes.

39Picking the 1966 class as the “beginning” of the mid-Sixties boost in office perquisites is a
bit arbitrary. After all, incumbents serving prior to 1966 surely reaped some of the same benefits as
the post-1966 incumbents. What this variable will allow us to assess, then, is how, beginning with
the 1966 freshman, how the relative risks of career termination increased or decreased compared to
earlier freshman classes.
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Scandal: a dummy variable coded 1 if an incumbent was involved in an
ethical or sexual misconduct scandal or when the incumbent was under
criminal investigation, and 0 otherwise.*

Open Gubernatorial Seat/Open Senatorial Seat: coded 1 if there is an
open gubernatorial and/or open Senatorial seat available in the incumbent’s
state, and O if not.

Constituency Size: this is the reciprocal of the number of Congressional
districts in the state. Hence, it measures the proportion of the state the
incumbent’s district encompasses.*!

Reform Era: coded 1 for the election cycles of 1968, 1970, and 1972,
and 0 otherwise. Hibbing (1982a, 1982b) has found that the years of House
reform were substantially related to members’ explanations for voluntarily
exiting Congress.

Prestige Position: coded 1 if a member is in the House leadership and/
or is a chair of a standing House committee, and O otherwise.

Republican Status: coded as 1 if the incumbent is a Republican and 0
otherwise.

Same Party as President: coded 1 if the incumbent’s party affiliation is
the same as the President’s.

Presidential Approval: this variable ranges (theoretically) from -1 to 1
and reflects the Gallup Presidential Approval rating in the month prior to the
election.*?

Approval*Inc. Party: this is an interaction term between presidential ap-
proval and whether or not the incumbent is of the party of the president.

Change in RDI: this variable measures the change in real disposable in-
come from the last quarter of the year preceding the November election to
the first quarter of the election year.

Change in RDI*Inc. Party: this is an interaction term between RDI
change and whether or not the incumbent is of the president’s party.

Watergate and the Golden Parachute: the Watergate variable is coded 1
for Republicans in the 1974 election cycle, and O for all other cases. Golden
Parachute is coded 1 for the 1992 election cycle (the last year incumbents
could keep war chests as personal cash), and 0 for all other election cycles.

In addition to these covariates, four interactions with the duration
covariate were included. The basis for these interactions is to assess timing

40Data for this variable primarily comes from Congressional Quarterly (1992) and various edi-
tions of the New York Times.

4IThe rationale for this variable as well as the open gubernatorial and open Senate seat vari-
ables comes from Rhode (1979) and Brace (1984, 1985) who find them positively related to politi-
cal ambition.

42A 0 denotes a 50% approval rating, a 1 (would) denote 100% approval, and —1 (would) de-
note 0% approval. Within these bounds, approval obviously varies.
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of change. In particular, we are asking whether or not it makes any differ-
ence when in an incumbent’s career he or she is redistricted, when (or if) he
or she is involved in a scandal, or when the opportunity for higher office oc-
curs. We can address these issues systematically through interactions of
these covariates with the duration measure.

To estimate the parameters of the competing risks model, a multino-
mial logit estimator (MNL) is used.*® The results of the two models are
shown in Table 4. The second and third columns of coefficients in Table 4
correspond to the voluntary termination model, and the last two columns
refer to the electoral termination model. Because the coefficients are MNL
estimates, they may be interpreted as reflecting by how much the log-
hazard of career termination increases or decreases. With respect to dura-
tion (measured as the number of terms in office), the log-hazard of retiring
increases by .06 with each term served. What “.06” means substantively is
not obvious. A convenient way of interpreting logistic regression coeffi-
cients is through the use of odds ratios.** The odds ratio of the coefficient
is the antilog of the coefficient, i.e., ePk, Thus, a coefficient of .06 elicits an
odds ratio of 1.06. Odds ratios have a convenient interpretation. Ratios
equal to 1 indicate that as a covariate’s value changes, the marginal in-
crease or decrease in the hazard is 0.45 Ratios greater than 1 imply that the
hazard is increasing as the value of the covariate increases by a unit. In
contrast, ratios less than 1 imply the hazard is decreasing as the value of
the covariate increases by a unit.

If one wishes to assess the percentage change in the hazard of career ter-
mination, this calculation is straightforward. Suppose a covariate changes by
some unit A. The odds of this change is then eP2 (Farole, Levine, and Mor-
gan 1995). To convert this factor change into a percentage change, the fol-
lowing formula can be used:

%A = (ePd —1) %100 [36]

43The MNL estimator works under the assumption of independence of irrelevant alternatives
(ITA). Researchers employing the multinomial logit estimator for event-history data (or any type of
data for that matter) should not naturally assume the IIA property holds. Hausman and McFadden
(1984), Small and Hsiao (1985), and others have developed specification tests for the IIA property.
Zhang and Hoffman (1993) provide a concise overview of these tests. If the IIA property does not
hold, the solutions are less accessible than the tests. Alvarez and Nagler (1995) discuss the multino-
mial probit (MNP) estimator. The MNP does not assume IIA (see also Hill, Axinn, and Thornton
1993). For these data, the Small-Hsiao specification test was run and the ITA assumption is reason-
able. Consult Small and Hsiao (1985) for details of this estimation.

44See Farole, Levine, and Morgan (1995) for a nice discussion of odds ratio analysis.

45An odds ratio of 1 implies a 1:1 bet. You pay $1 to make $1 dollar. The overall impact on
your income is 0.
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Table 4. A Competing Risks Model of Congressional Careers

Voluntary Termination

Electoral Termination

Retire vs. Ambition vs.  Losing (Primary) Losing (Gen.)
Running Running vs. Winning vs. Winning
Duration .06** 10%** —.Q9*** .03
Incumbent Age .08** —.05%** .04xx* L04++%
Southern Dem. Status
S. Dem. Before 1970 1.26%** —1.54%* —.62% 1.24%%*
S. Dem. After 1970 STk —.53* -.19 .53
Personal Vulnerability
Post 1966 Cohort -.03 A1H* —45%k* -.05
Prior Vote Margin ) .007%* —.Q7*k* —.Q1***
Redistricting -1.78 1.66%* 2.28% %k .16
Timing of Redist. .34%% -.09 -.004 21
Scandal 1.33% — 3, 12%:** 4.42%%%
Timing of Scandal -.10 — .01 -.17*
Opportunity Structure
Open Gov. Seat -19 Rz
Timing of Gov.Seat. .03 —11%*
Open Sen. Seat 27 10**
Timing of Sen. Seat -.02 .08
Constituency Size 44 2.41%** 85%* 1.48**
Institutional Desirability
Reform Era J13%* .23
Prestige Position -33 -1.50* -.54 —
Republican Status 27* .10 —.81** .39
National Conditions
Same Party as Pres. 36%* .08 1.51%** 12
Pres. Approval -1.40 54 4.56*** 2.58
Approval*Inc. Party -.36 .26 —9.3x** -3.78
%ARDI 1 Quarter .04 .06 .60** —44%*
%ARDI 1*Inc. Party .01 -.003 —1.63%** .10
Watergate Election 27 -76 =37 -89
Golden Parachute 80** -23
Constant —8.127%* —2.11#** —3.67** —6.55%*

Log Likelihood =-1689
Chi-Squared(50) = 494.63
p <.0001
N =5508

Log Likelihood =-1207.90
Chi-Squared(36) = 638.94

p <.0001

N =5036

**¥p < .01, **p < .05, *p < .10.
Numbers are multinomial logit coefficients.
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We interpret the results of the competing risks model in terms of percentage
increases or decreases in the hazard. Table 5 presents an analysis of the
change in hazards for selected covariate profiles. Given the number of pa-
rameters estimated in the two models and because of space considerations,
we only consider a few covariates.

With respect to duration, we find that as each term passes, the risk asso-
ciated with retirement increases by about 6%. In contrast, the risk associated
with losing a general election decreases by about 8%. Thus, seniority in
Congress has a mild impact on termination. The longer an individual stays
in Congress, the less likely he or she is to exit office electorally and the more
likely he or she is to leave office on his or her own terms. Institutional at-
tributes also affect the retirement decision. We find that the risk associated
with retirement was about 107% greater for incumbents serving through the
reform era in the House of Representatives. As Hibbing (1982a, 1982b)
notes, the House reforms altered the desirability for serving in the House.
Seniority rule was substantially undermined and junior members accrued
more power (relative to earlier periods). For incumbents serving prior to this
era, the House was evidently a more desirable institution in which to serve.
After the reforms, however, the hazard of voluntary career termination
through retirement greatly increased relative to incumbents who did not
serve in the House during these reforms. In addition to the reform period, we
see that Republican incumbents were much more likely to exit office by re-
tirement than Democrats. The hazard of retirement is about 31% greater for
Republicans than Democrats. This difference is probably attributable to the
Republicans’ status as the minority party during much of the time period
considered in this analysis.

Turning attention to ambition decisions, we find that the opportunity
structure for higher office is strongly related to the odds of terminating the
House seat to seek alternative office. Ambition is voraciously related to the
availability of open gubernatorial or open Senatorial seats. These huge in-
creases in the hazard of ambition substantively suggest that when the likeli-
hood of winning alternative office is relatively high (open seats imply no
running incumbent), incumbents harboring ambition are quite likely to forgo
the House seat in search of another office. These results largely confirm the
findings of Rhode (1979) and Brace (1984). In addition to this confirming
finding, use of event history data permits a finer understanding of how the
attractiveness of alternative office changes across the span of a career. What
we find is that the attractiveness of a gubernatorial seat diminishes as one
progresses through a career. As each term passes, the attractiveness of an
open gubernatorial seat decreases by about 11%. Interestingly, this pattern
does not hold for Senate seats. Regardless of where in a career an open Sen-
ate seat emerges, ambitjous incumbents are just as likely to seek this type of
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office. Institutional prestige is also related to the hazard of ambition. As one
accrues a position in the leadership or one acquires a full committee chair-
manship, the hazard of ambition is 78% lower than an incumbent not hold-
ing a prestigious House position.

The risk of losing an election (and thus ending one’s career) is substan-
tially related to the incumbent’s visibility, vulnerability, and national condi-
tions. Comparing across incumbents, we find that as the proportion of the
state an incumbent represents increases by one-tenth, the hazard of losing
in the general election increases by about 9%. Substantively, this suggests
that electoral vulnerability of the incumbent (as measured through risk of
defeat) is greater in low populous states than high populous states. In states
like Montana, Vermont, and Alaska, where the incumbent House member
may be as well-known as the Senator, competition for the House seat is
likely to be greater than in states like New York, California, or Ohio, where
the visibility and possibly the desirability of the House seat is much less. In
addition, we find a strong relationship between visibility and loss in the
primary election. The risk of primary defeat increases by about 16% as we
move from incumbents in high-populous states to incumbents in low-popu-
lous states.

National conditions seem to also exert considerable leverage on the haz-
ard of electoral loss. Presidential popularity is largely related to winning or
losing. When the incumbent is of the same party as the president and the
president’s approval rating increases positively by one-tenth*, the hazard or
risk of electoral defeat diminishes by about 38%. In stark contrast, when the
incumbent is of the president’s party and the president’s approval rating
drops by one-tenth, the risk associated with losing increases dramatically by
61% (compared to incumbents not of the president’s party). A similar effect
emerges for national economic conditions (measured as change in real dis-
posable income). When the first quarter RDI changes positively by 1/10th %
(thus improving) and the incumbent is of the president’s party, the risk of
defeat drops by 41%. Conversely, when the economy is faring poorly and
the incumbent is of the president’s party, the odds of defeat increase by 67%.
These findings, we believe, are indicative, in part, of the strategic politician
theory (Jacobson 1992; Jacobson and Kernell 1983). When the economy,
early in the election cycle, is doing poorly, strong challengers tend to
emerge. These results provide some basis for this contention. The risk of de-
feat is strongly related to first quarter economic conditions. It is precisely
during this time of an election cycle that most candidacy decisions must be
made. If strong challengers are emerging in response to an unfavorable

46Recall that the coding for this variable ranges from —1 to 1. An increase of one-tenth corre-
sponds to a 1% increase in approval.
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economy, then the hazard of electoral defeat should increase. In fact, it in-
creases substantially.

Some final results to consider include the relationship between electoral
security and changes during the mid-Sixties in House office perquisites. In-
cumbents elected in or after 1966 have a risk of electoral defeat about 36%
lower than incumbents elected prior to 1966. Furthermore, these incumbents
also display a greater risk toward ambition. They are about 50% more likely
to seek alternative office than incumbents in earlier periods.

The event history approach to understanding congressional careers has
elicited both novel findings and confirmation of previous research. Event
history parameters generate politically relevant information concerning
change processes. In the application here, as well as the two applications
discussed earlier, we have seen how longitudinal information adds a new
perspective on processes that have either been dealt with cross-sectionally or
failed to exploit the longitudinal nature of the data.

Conclusions

Inferences from event history models can be powerful and represent a
substantial improvement over traditional cross-sectional models or panel
models containing few and/or distantly spaced waves of data. Many pro-
cesses of interest to political scientists are longitudinal; we are often inter-
ested in the dynamics underlying change, or when change occurs. The event
history framework is ideally suited for such research questions. We have
presented an overview of some central themes in analyzing event histories
and provided three applications to demonstrate the potential usefulness of
the methodology. Our aim has been to keep the discussion at a fairly “ap-
plied” level. We have conveniently omitted comprehensive discussion of
some of the more technical aspects of the event history model and instead
refer interested readers to the references. However, readers should have
some sense of both how to estimate and interpret event history models and
when to use such models. Like any method, the event history model is not a
cure-all. The data requirements for proper estimation of such models are im-
portant to recognize. Nevertheless, given the powerful inferences that can be
drawn from such models, data collection efforts should be undertaken with
these sorts of models in mind. There is a wide scope of application of event
history models in political science. As more political scientists understand
event history methodology, new questions may be asked and old questions
may more appropriately be answered by having more “realistic” models of
processes under study and full use of the data that are available.

Manuscript submitted 13 March 1996.
Final manuscript received 21 November 1996.
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APPENDIX A

A wide variety of statistical packages, of varying degrees of familiarity and sophisti-
cation, will perform common types of event history analysis without the need to write
more than a basic set of instructions. We briefly review the capabilities of five of the
most common programs.

SPSS for Windows, version 6.1 : two of the distinguishing features of SPSS are the
ease of use even for those with little familiarity with statistic packages (windows, point
and click format) and the extensive diagnostics for the Cox Proportional Hazards
model, which can include time-varying covariates. SPSS is a good starting package,
however, it is unable to compare the Cox and parametric models, which is important
because if a parametric model is appropriate, the parametric model is more efficient.
SPSS has an informative web site that can be reached at: http://www.spss.com. The
discussion list address is: comp.soft-sys.spss. SPSS can be reached at: 444 N. Michigan
Avenue, Chicago, IL 60611 or by 1-800-543-2185.

SAS, version 6: the SAS System has several modules that allow estimation of many of
the models discussed in this paper. Three proc statements comprise the bulwark of
SAS’s event history capabilities: PROC PHREG, PROC LIFETEST, and PROC
LIFEREG. The PHREG statement permits estimation of the Cox proportional hazards
model. Time-varying covariates can be used through PHREG. The LIFEREG procedure
is a general estimator that allows estimation of the exponential, Weibull, log-normal,
gamma, and Gompertz duration models. The LIFEREG procedure computes such
statistics as Kaplan-Meier functions. The SAS system is good at providing diagnostic
options, including residual plots. Additionally, Allison (1995) has published a compen-
dium that presents detailed examples of the SAS System for event history models. The
web page for SAS is: http://www.sas.com.

STATA, version 5.0: nonparametric, semiparametric, and parametric models with time-
varying covariates (but only exponential and Weibull distributions) can all be estimated.
Additionally, repeating events models are estimable in STATA. Cox proportional hazard
models with time-varying covariates can be estimated (LIMDEP does not have a
canned procedure for this). STATA will estimate Kaplan-Meier survival curves with
confidence intervals and compare two survival curves for similarities. STATA has excel-
lent graphics. For example, after estimating a Cox model, STATA will generate vari-
ables for baseline hazards and survivor functions as well as observation-specific sur-
vival estimates (but only if the model does not have time-varying covariates,
unfortunately). STATA will also estimate a Cox regression with left-censored data or
with stratification. The STATA manual requires particular mention since it is not par-
ticularly user-friendly (good on-line help is some consolation). STATA has a discussion
list that sees a lot of action and is a great resource of other users and STATA developers:
listproc @dsg.harvard.edu. STATA also has one of the better web pages, which can be
reached at: http://www.stata.com. One of the unique things about the STATA web page
is that you can take introductory through advanced courses (for a fee).

LIMDEDP, version 7.0: Limdep provides a comprehensive set of programs for analyzing
event history data, including nonparametric approaches, such as life tables,
semiparametric models, and finally parametric models. Distributional assumptions that
are built-in include exponential, Weibull, normal, logistic, gamma, and Gompertz.
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Time-varying covariates are available for most of these models. A Weibull (and there-
fore exponential) model with gamma heterogeneity, split population model, and models
in which the truncation point is not zero can all easily be estimated in LIMDEP. In
contrast to the STATA manual, the LIMDEP manual is a wonderful resource containing
technical information and valuable citations of where to start to learn more about
econometric issues concerning a particular model. Another valuable asset of LIMDEP is
the discussion list and the fact that William Greene, who developed LIMDEP and wrote
Econometric Analysis, 1993, replies to inquiries so quickly. To subscribe to the discus-
sion list send a message to: limdep-1@gsb.usyd.edu.au. A copy of the most recent
LIMDEP manual can be found at http://wuecon.wustl.edu/limdep/limdep.html.

Finally, Altman and Stavola (1994) and Collett (1994) provide comparisons and
code for SAS, SPSS, and STATA, among others, in the context of estimating a Cox
model with time-varying covariates. The data, code, and output for the examples used
in this paper are available, see note 1. Other programs available for analysis of event
history data include: BMDP, EGRET, EPICURE, EPILOG, GAUSS, Sigma Plot,
SPIDA, S-PLUS, and Statistica.
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