
Programming and Post-Estimation

• Bootstrapping

• Monte Carlo

• Post-Estimation Simulation (Clarify)

• Extending Clarify to Other Models
– Censored Probit Example

What is Bootstrapping?

• A computer-simulated nonparametric technique for
making inferences about a population parameter
based on sample statistics.

• If the sample is a good approximation of the
population, the sampling distribution of interest can
be estimated by generating a large number of new
samples from the original.

• Useful when no analytic formula for the sampling
distribution is available.

How do I do it?

1. Obtain a Sample from the population of interest. Call this x
= (x1, x2, … , xn).

2. Re-sample based on x by randomly sampling with
replacement from it.

3. Generate many such samples, x1, x2, …, xB – each of length
n.

4. Estimate the desired parameter in each sample, s(x1), s(x2),
…, s(xB).

5. For instance the bootstrap estimate of the standard error is
the standard deviation of the bootstrap replications.

() ()[] ()∑ ∑
=

=
−−=

B

b

B

b
bB

B BBxsxsES
1

2

1
1//ˆ

Example: Standard Error of a Sample Mean
Canned in Stata

use "I:\general\PRISM Programming\auto.dta", clear

Type: sum mpg

Example: Standard Error of a Sample Mean
Canned in Stata

Type: bootstrap "summarize mpg" r(mean), reps(1000)

xx B −

6790806.*96.12973.21 ±≈

Example: Difference of Medians Test

Type: sum length, detail

Type: return list

Example: Difference of Medians Test

Example: Difference of Medians Test

Example: Difference of Medians Test

Type: bootstrap "mymedian" r(diff), reps(1000)

The medians are not
very different.

What is Monte Carlo Simulation?

• Uses the observation of random samples from
known populations of simulated data to track the
behavior of a statistic.

• If the sampling distribution of a statistic is the density
function of values it could take on in a given
population, then its estimate is the relative frequency
distribution of the values that were actually observed
in many samples drawn from that population.

• Since we can generate the population to have any
characteristics we wish, Monte Carlos are very
flexible.

How do I do it?

1. Determine what the “population” is.
2. Sample from the “population”
3. Calculate the estimator of interest . Save this

value.
4. Repeat steps 2 and 3 many times.
5. Construct the frequency distribution of the

values. This is the Monte Carlo estimate of the
sampling distribution of under the conditions
you specified for the population.

()θ̂

()θ̂

θ

An Example: Coin Toss

• If you toss a fair coin 10 times, what is the
probability of obtaining exactly 3 heads?

• By the binomial probability distribution:

() 1172.05.0*5.0
!310!3

!10 73 ≈
−

=

However, if we didn’t know how to use the
binomial distribution, we could toss a fair coin 10
times in a repeated number of trials and simulate
this probability.

Coin Toss Monte Carlo

Coin Toss Monte Carlo

Coin Toss Monte Carlo

Type: gen prob = counter/10000

Type: sum prob

Programming the Coin Toss Monte Carlo

• Allows us to automate the experiment, controlling:
ü The number of tosses

(e.g. 10, or something else)
ü The number of trials

(e.g. 10,000 or something else)
ü The number of successes

(e.g. 3 or something else)

Coin Toss Program

Coin Toss Program

Coin Toss Program

Type: Clear

Type: coinflip 3 10 10000

Coin Toss Program

Another Monte Carlo Application:
The Logic of Post Estimation Simulation
So, you estimate a model… and you want to say
something substantive with quantities of interest:

1̂β

Predicted or Expected Values of DV =

First Differences = ββ µσ
ˆˆ XX −+

βµ
ˆX

The problem is that our are uncertain! sβ̂

The solution is we know how uncertain.

1σ̂

Monte Carlo Simulation of Parameters

Standard Deviation =
1β̂

1σ̂

In order to capture the uncertainty, we draw
simulated from the multivariate* normal
distribution.

sβ̂

1β̂

1β̂
1β̂

1β̂

1β̂

1β̂

1β̂

1β̂
1β̂

1β̂

1β̂

1β̂ 1β̂

1̂β
1̂β

1̂β
1̂β

1β̂ 1β̂

1β̂
1β̂

1β̂

1β̂ 1β̂

1β̂
1̂β

1̂β

1β̂
1β̂

1β̂
1β̂

1β̂

1β̂ 1β̂

1β̂

1β̂
1β̂

1β̂ 1β̂

1β̂

1β̂ 1β̂

1β̂
1β̂

1β̂
1β̂

1β̂
1β̂ 1β̂

1β̂
1β̂1β̂

1β̂1β̂1β̂

1β̂

1̂β

1β̂

1β̂

1β̂

1β̂

Then we use these
simulated parameters
to calculate many
draws of the same
quantity of interest.

Simulating Quantities of Interest

=

1

2

1

ˆ

ˆ
ˆ

ˆ

α

β
β

γ
M

()

=

αβαβα

αβββ

αβββ

γ

ˆ2ˆˆˆˆ

ˆˆˆˆ

ˆˆˆˆ

1

22221

21211

ˆˆ

vvv

vvv
vvv

V

L
MMM

L
L

we simulate parameters with M draws from the
multivariate normal distribution… ()VN ˆ,ˆ~~ γγ

M

M

M

α

β
β

α

β
β

α

β
β

~

~
~

~

~
~

~

~
~

2

1

2

22

12

1

21

11

M
L

MM

γ~ ()βθ
~

,
~

cc Xg=

cY
~ ()αθ ~,

~
cf

cY

() ()βθαθ ,,,~ iiii XgfY =

() () L+++== 22110
2 ,,,~ ββββµσµ iiiiii XXXgNY

In practice…

• Choose a starting scenario, Xc .
• Draw one value of , and compute .
• Simulate the outcome , by taking a random draw from .
• Repeat M times to get the distribution of .

Clarify (King et. al. AJPS 1999)

• estsimp – estimates the model and simulates the parameters
• This command must precede your regression command
• e.g.: estsimp logit y x1 x2 x3 x4
• This will save simulated βs to your dataset!

• setx – sets the values for the IVs (the Xs)
• Used after model estimation to set values of the Xs
• e.g.: setx x1 mean x2 p20 x3 .4 x4[16], nocwdel
• functions = mean|median|min|max|p#|math|#|‘macro’|varname[#]
• reset values by re-issuing the command, e.g.: setx x1 median

• simqi – simulates the quantities of interest
• Automates the simulation of quantities of interest for the X values
you just set.
• e.g.: simqi, prval(1)
• e.g.: simqi, fd(prval(1)) changex(x4 p25 p75)

You Can Use Clarify, but you Don’t have to.

Models Currently Supported by Clarify
regress
logit
probit
ologit
oprobit

mlogit
poisson
nbreg
sureg
weibull

But, you really don’t need Clarify to do this, so you can simulate
quantities of interest for any model!

ü Easy to simulate parameters because Stata saves them after estimation!
ü Program the correct link function yourself!

An Example:
The Censored Probit Model
Selection Equation:

Outcome Equation:

Where:

/*Programming Step One:
Estimate Model*/

heckprob y2 x1 x2 x3 x4,
sel(y1 = z1 z2 z3 z4)
robust

jjj uzy 21 += γ

jjj uxy 12 += β

()
()

() ρ=21

2

1

,
1,0~
1,0~

uucorr
Nu
Nu

An Example:
The Censored Probit Model
Simulate the model

parameters by
drawing from the
multivariate normal
distribution.

Note: there are 11 – 4
Xs, 4 Zs, 2 constants,
and ρ (the correlation
between the errors).

/*Programming Step Two:
Draw from multivariate
normal, mean and
Covariance Matrix .*/

matrix params = e(b)
matrix P = e(V)
drawnorm b1-b11,

means(params) cov(P)
double

β
~

β̂

Σ̂

An Example:
The Censored Probit Model
Stata estimates the

hyperbolic arctangent
of ρ, so we must
simulate to get the
actual ρ.

/*Programming Step Three:
Generate Simulated Rho*/

gen simrho = (exp(2*b11)-
1)/(exp(2*b11)+1)

An Example:
The Censored Probit Model
Initiate a looping
structure to generate m
(in this case 1,000)
simulated first
differences for the effect
of x1 on y2 comparing
when x1 is at its mean
(the base model) to
when x1 is at a value
two standard deviations
(denoted _m2sd) below
its mean.

/*ProgramStep Four: The Loop*/
local i =1
/*A. Generate variables that will be used to fill

in a cell of Substantive Table*/
generate base_y2=.
generate x1_m2sd=.
while `i' <=1000 {
/*B. Generate zγ for the selection equation.*/
quietly generate select = b6[`i'] +
(b7[`i']*z1) + (b8[`i']*z2) +
(b9[`i']*z3) + (b10[`i']*z4)
/*C. Generate xb for the outcome equation.*/
quietly generate outcome =
b1[`i'] + (b2[`i']*x1) +
(b3[`i']*x2) + (b4[`i']*x3) +
(b5[`i']*x4)

An Example:
The Censored Probit Model
This is the meat of the
simulation. The first
three commands
generate the probability
of being selected and
experiencing the
outcome (p_11) for the
base model. For the
censored probit, this
probability is (Greene
2000, 857):

/* Generate first difference*/
quietly generate p_11 =
binorm(outcome,select,simrho)

quietly summarize p_11, meanonly
quietly replace base_y2=r(mean) in `i'
quietly generate x1_m2sd=outcome -
(b1[`i']*x1) + (b1[`i']*-0.2)

quietly generate p11_x1_m2sd
=binorm(x1_m2sd,select,simrho)

quietly summarize p_x1_m2sd,
meanonly

quietly replace x1_m2sd=r(mean) in `i'[]ργβ ,,2 zx ′′Φ

An Example:
The Censored Probit Model
To get the other 999 we
drop the three variables we
just generated and repeat the
loop until `i’ = 1,000.
When we’re done with the
1,000 simulations, we can
use the centile command to
get the relevant distributions.
To do this for each variable
in the model, we would
embed this loop within a
larger looping structure.

/*Step 5: Do the Loop Again*/
drop select outcome p_11

x1_m2sd p11_x1_m2sd
disp `i'
local i=`i'+1
}
centile base_y2 x1_m2sd,

centile(2.5 50 97.5)

