
Programming and Post-Estimation

• Bootstrapping 

• Monte Carlo

• Post-Estimation Simulation (Clarify)

• Extending Clarify to Other Models
– Censored Probit Example



What is Bootstrapping?

• A computer-simulated nonparametric technique for 
making inferences about a population parameter 
based on sample statistics.

• If the sample is a good approximation of the 
population, the sampling distribution of interest can 
be estimated by generating a large number of new 
samples from the original.

• Useful when no analytic formula for the sampling 
distribution is available.



How do I do it?

1. Obtain a Sample from the population of interest.  Call this x
= (x1, x2, … , xn).

2. Re-sample based on x by randomly sampling with 
replacement from it.

3. Generate many such samples, x1, x2, …, xB – each of length 
n.

4. Estimate the desired parameter in each sample, s(x1), s(x2), 
…, s(xB).

5. For instance the bootstrap estimate of the standard error is 
the standard deviation of the bootstrap replications.
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Example: Standard Error of a Sample Mean
Canned in Stata

use "I:\general\PRISM Programming\auto.dta", clear

Type: sum mpg



Example: Standard Error of a Sample Mean
Canned in Stata

Type: bootstrap "summarize mpg" r(mean), reps(1000) 

xx B −

6790806.*96.12973.21 ±≈



Example: Difference of Medians Test

Type: sum length, detail

Type: return list 



Example: Difference of Medians Test



Example: Difference of Medians Test



Example: Difference of Medians Test

Type: bootstrap "mymedian" r(diff), reps(1000)

The medians are not 
very different.



What is Monte Carlo Simulation?

• Uses the observation of random samples from 
known populations of simulated data to track the 
behavior of a statistic.

• If the sampling distribution of a statistic is the density 
function of values it could take on in a given 
population, then its estimate is the relative frequency 
distribution of the values that were actually observed 
in many samples drawn from that population.

• Since we can generate the population to have any 
characteristics we wish, Monte Carlos are very 
flexible.



How do I do it?

1. Determine what the “population” is.
2. Sample from the “population”
3. Calculate the estimator of interest    .  Save this 

value. 
4. Repeat steps 2 and 3 many times.
5. Construct the frequency distribution of the     

values.  This is the Monte Carlo estimate of the 
sampling distribution of    under the conditions 
you specified for the population.
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An Example: Coin Toss

• If you toss a fair coin 10 times, what is the 
probability of obtaining exactly 3 heads?

• By the binomial probability distribution:

( ) 1172.05.0*5.0
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However, if we didn’t know how to use the 
binomial distribution, we could toss a fair coin 10 
times in a repeated number of trials and simulate 
this probability.



Coin Toss Monte Carlo



Coin Toss Monte Carlo



Coin Toss Monte Carlo

Type: gen prob = counter/10000

Type: sum prob



Programming the Coin Toss Monte Carlo

• Allows us to automate the experiment,  controlling:
ü The number of tosses 

(e.g. 10, or something else)
ü The number of trials 

(e.g. 10,000 or something else)
ü The number of successes 

(e.g. 3 or something else)



Coin Toss Program



Coin Toss Program



Coin Toss Program

Type: Clear

Type: coinflip 3 10 10000 



Coin Toss Program



Another Monte Carlo Application:
The Logic of Post Estimation Simulation
So, you estimate a model… and you want to say
something substantive with quantities of interest:

1̂β

Predicted or Expected Values of DV = 

First Differences = ββ µσ
ˆˆ XX −+

βµ
ˆX

The problem is that our         are uncertain! sβ̂

The solution is we know how uncertain.

1σ̂



Monte Carlo Simulation of Parameters

Standard Deviation =
1β̂

1σ̂

In order to capture the uncertainty, we draw 
simulated       from the multivariate* normal 
distribution.
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Then we use these 
simulated parameters 
to calculate many 
draws of the same 
quantity of interest.



Simulating Quantities of Interest
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we simulate parameters with M draws from the 
multivariate normal distribution… ( )VN ˆ,ˆ~~ γγ
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In practice…

• Choose a starting scenario, Xc .
• Draw one value of    , and compute                              .
• Simulate the outcome      , by taking a random draw from        .
• Repeat M times to get the distribution of        .



Clarify (King et. al. AJPS 1999)

• estsimp – estimates the model and simulates the parameters
• This command must precede your regression command
• e.g.: estsimp logit y x1 x2 x3 x4
• This will save simulated βs to your dataset!

• setx – sets the values for the IVs (the Xs)
• Used after model estimation to set values of the Xs
• e.g.: setx x1 mean x2 p20 x3 .4 x4[16], nocwdel
• functions = mean|median|min|max|p#|math|#|‘macro’|varname[#]
• reset values by re-issuing the command, e.g.: setx x1 median

• simqi – simulates the quantities of interest
• Automates the simulation of quantities of interest for the  X values 
you just set.
• e.g.: simqi, prval(1)
• e.g.: simqi, fd(prval(1)) changex(x4 p25 p75)



You Can Use Clarify, but you Don’t have to.

Models Currently Supported by Clarify
regress
logit
probit
ologit
oprobit

mlogit
poisson
nbreg
sureg
weibull

But, you really don’t need Clarify to do this, so you can simulate 
quantities of interest for any model!

ü Easy to simulate parameters because Stata saves them after estimation!
ü Program the correct link function yourself!



An Example: 
The Censored Probit Model
Selection Equation:

Outcome Equation:

Where:

/*Programming Step One: 
Estimate Model*/

heckprob y2 x1 x2 x3 x4,
sel(y1 = z1 z2 z3 z4) 
robust

jjj uzy 21 += γ

jjj uxy 12 += β
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An Example: 
The Censored Probit Model
Simulate the model 

parameters by 
drawing from the    
multivariate normal 
distribution.  

Note: there are 11 – 4 
Xs, 4 Zs, 2 constants, 
and ρ (the correlation 
between the errors).

/*Programming Step Two: 
Draw     from multivariate 
normal, mean     and 
Covariance Matrix    .*/

matrix params = e(b)
matrix P = e(V)
drawnorm b1-b11, 

means(params) cov(P) 
double

β
~

β̂

Σ̂



An Example: 
The Censored Probit Model
Stata estimates the 

hyperbolic arctangent 
of ρ, so we must 
simulate to get the 
actual ρ.

/*Programming Step Three: 
Generate Simulated Rho*/

gen simrho = (exp(2*b11)-
1)/(exp(2*b11)+1)



An Example: 
The Censored Probit Model
Initiate a looping 
structure to generate m
(in this case 1,000) 
simulated first 
differences for the effect 
of x1 on y2 comparing 
when x1 is at its mean 
(the base model)  to 
when x1 is at a value 
two standard deviations 
(denoted _m2sd) below 
its mean.

/*ProgramStep Four: The Loop*/
local i =1
/*A. Generate variables that will be used to fill 

in a cell of Substantive Table*/
generate base_y2=.
generate x1_m2sd=.
while `i' <=1000 {
/*B. Generate zγ for the selection equation.*/
quietly generate select = b6[`i'] + 
(b7[`i']*z1) + (b8[`i']*z2) + 
(b9[`i']*z3) + (b10[`i']*z4)
/*C.  Generate xb for the outcome equation.*/
quietly generate outcome = 
b1[`i'] + (b2[`i']*x1) + 
(b3[`i']*x2) + (b4[`i']*x3) + 
(b5[`i']*x4)



An Example: 
The Censored Probit Model
This is the meat of the 
simulation.  The first 
three commands 
generate the probability 
of being selected and 
experiencing the 
outcome (p_11) for the 
base model.  For the 
censored probit, this 
probability is (Greene 
2000, 857):

/* Generate first difference*/
quietly generate p_11 =
binorm(outcome,select,simrho)

quietly summarize p_11, meanonly
quietly replace base_y2=r(mean) in `i'
quietly generate x1_m2sd=outcome -
(b1[`i']*x1) + (b1[`i']*-0.2)

quietly generate p11_x1_m2sd 
=binorm(x1_m2sd,select,simrho)

quietly summarize p_x1_m2sd, 
meanonly

quietly replace x1_m2sd=r(mean) in `i'[ ]ργβ ,,2 zx ′′Φ



An Example: 
The Censored Probit Model
To get the other 999 we 
drop the three variables we 
just generated and repeat the 
loop until `i’ = 1,000. 
When we’re done with the 
1,000 simulations, we can 
use the centile command to 
get the relevant distributions.  
To do this for each variable 
in the model, we would 
embed this loop within a 
larger looping structure. 

/*Step 5: Do the Loop Again*/
drop select outcome p_11 

x1_m2sd  p11_x1_m2sd
disp `i'
local i=`i'+1
}
centile base_y2 x1_m2sd,

centile(2.5 50 97.5)


