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SUMMARY

Repeated events processes are ubiquitous across a great range of important health, medical, and public
policy applications, but models for these processes have serious limitations. Alternative estimators often
produce di�erent inferences concerning treatment e�ects due to bias and ine�ciency. We recommend
a robust strategy for the estimation of e�ects in medical treatments, social conditions, individual be-
haviours, and public policy programs in repeated events survival models under three common conditions:
heterogeneity across individuals, dependence across the number of events, and both heterogeneity and
event dependence. We compare several models for analysing recurrent event data that exhibit both het-
erogeneity and event dependence. The conditional frailty model best accounts for the various conditions
of heterogeneity and event dependence by using a frailty term, strati�cation, and gap time formulation
of the risk set. We examine the performance of recurrent event models that are commonly used in
applied work using Monte Carlo simulations, and apply the �ndings to data on chronic granulomatous
disease and cystic �brosis. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Correlated event times are common in the study of health and related sciences. Correlation
may occur when individuals experiencing a single event belong to groups or clusters, such as
families or treatment centres, respectively. Alternatively, correlation may be due to recurrent
events processes—where the subject experiences the same type of event more than once, such
as hospital stays or heart attacks. In the case of recurrent events, correlation can come from
two distinct sources:

1. Heterogeneity across individuals: In any study, some cases have a higher or lower event
rate than other cases due to unknown, unmeasured, or unmeasurable e�ects. Individuals
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have varied lifestyles, genetic traits, and experiences, for example, which in�uence the
likelihood that they will succumb to disease but either cannot be measured or are un-
known. As a result, some individuals are more prone to disease, experiencing their
�rst, second, third, etc., disease recurrence more quickly than other individuals. This
introduces heterogeneity across individuals and produces within-subject correlation in
the occurrence and timing of recurrent events within a given subject. At the same
time, response rates can be homogeneous within individuals producing within-subject
correlation in event times.

2. Event dependence: The occurrence of one event may make further events more or less
likely. This event (or occurrence) dependence may be produced by a biological weak-
ening (damage e�ects) or strengthening (resistance e�ects). Either of these phenomenon
implies that the risk for an event is a function of the occurrence of previous spells. This
creates within subject correlation as well.

Medical research and clinical experience suggest that both heterogeneity and event depen-
dence are likely to be the rule, rather than the exception, in the study of recurrent events.
Our work attempts to separate the e�ects of event dependence from heterogeneity (see also
References [1–3], which we build upon). The Cox [4] proportional hazards model and its
extensions have been widely used to model correlated events. In particular, recent work has
systematically characterized and compared these models in the context of recurrent events
[5, 6]. Our aim is to compare several models for analysing recurrent event data that exhibits
both heterogeneity and event dependence. We include a gap time conditional frailty model,
which incorporates a random e�ect—to account for heterogeneity—with strati�cation and a
conditional de�nition of the risk set—to account for event dependence. We discuss com-
monly used models for recurrent events and the conditional frailty model in Sections 2 and 3,
respectively. We assess the performance of these models using Monte Carlo simulations in
Section 4. The simulations focus on how heterogeneity and event dependence both individually
and jointly a�ect estimates and hypothesis tests. In Section 5, we apply the modelling strat-
egy to data sets on patients with chronic granulomatous disease and cystic �brosis. Section 6
concludes with recommendations for analysts studying repeated events.

2. REPEATED EVENTS PROCESSES: FEATURES AND MODELS

It is well known that any correlation among events—produced individually or jointly by
heterogeneity and event dependence—violates the Cox model’s assumption that the timing of
events is independent. This has two important consequences: the Cox model is both biased
and ine�cient in typical repeated events contexts [6–9]. Variations of the Cox model, namely
variance-corrected and frailty=random e�ects models have been proposed for estimation with
recurrent events to account for the correlation.
Variance-corrected models were developed to account for unobserved, or at least

unaccounted for, heterogeneity by using robust standard errors, and sometimes strati�cation.
Variations within the family of variance-corrected models are based on di�erent de�nitions of
the risk set, i.e. how individuals are de�ned to be at risk for any given event, k, and whether
they allow for event speci�c baseline hazards. In the Andersen–Gill (AG) [10] model all
cases are at risk for each event in all periods and share a common baseline rate function. In
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contrast, conditional models stratify the data by event so that the baseline hazard is allowed
to vary with each event. Conditional models are estimated in elapsed time or in gap time
and cases are designated at risk for event k only after experiencing the k—1st event [11, 12].
Elapsed time estimation produces the hazard of an event since the study began while the gap
time formulation gives the hazard since the previous event. For example, in elapsed time an
observation with events in months 4, 10 and 14 would have start and stop times of 0–4,
0–10, and 0–14. In gap time, the observation would have start and stop times of 0–4, 0–6,
0–4. The choice of gap versus elapsed time depends on the research question at hand. Using
elapsed time presumes there are substantive reasons to believe that the ‘clock should restart’
after each event; such a model is used to determine the e�ect of covariates on the kth event
since the time from the previous event. In contrast, elapsed time models assess the e�ect of
covariates on the kth event since the time from the start of the study. Other variance-corrected
alternatives such as the marginal model of Wei et al. [13] allow all cases to be at risk for each
event so that individuals would be at risk for the �rst, second, third, etc., event in all periods
that the individual is observed. That is, an observation would be at risk for the fourth event
before the �rst event even occurred. Because the previous literature, has largely discredited
this model for the study of repeated events, we do not consider it further. See Reference [6]
for the hazards and likelihoods for each of the variance-corrected models.
Variance-corrected models present one way to deal with the e�ciency problems produced

by heterogeneity across individuals. A subset of these models attempts to incorporate event
dependence by allowing the baseline hazards to vary with the number of events an individual
experiences. However, applied work using alternative variance-corrected estimators often leads
to di�erent inferences about estimated e�ects [3, 9–17] leading to di�erent policy recommenda-
tions. These di�erences are explainable because variance-corrected models do not incorporate
the heterogeneity into the estimates themselves and therefore remain biased. Research using
simulations to examine the estimates of treatment e�ects for a subset of the variance-corrected
models assuming normally distributed and uniformly distributed random e�ects, respectively,
has found that heterogeneity induces negative biases in the estimates of the treatment e�ect
so that treatment e�ects are underestimated [5, 6]. The �nding is similar to Aalen’s �ndings
about the Cox model itself when applied to a repeated events context [7]. Therneau and
Grambsch suggested that the magnitude of the bias may be tolerable in some circumstances,
but such a conclusion is unsatisfying. Additional work comparing variance-corrected models
in the bivariate case with event dependence as well as heterogeneity demonstrates signi�cant
bias in estimated e�ects, poor size and power of hypothesis tests, and large model mean
squared errors with this data generating process [18].
In contrast to the variance-corrected models, frailty or random e�ects models incorpo-

rate heterogeneity into the estimator by making assumptions about the frailty distribution
and incorporating it into the model estimates and thus present a more promising alternative
than variance-corrected models for dealing with heterogeneity [5, 19]. The underlying logic
of frailty models is that some subjects (or groups or clusters) are intrinsically more or less
prone to experiencing the event of interest than are others, and that the distribution of these
e�ects can be at least approximated. Frailty models treat repeated events as a special case of
more general unit-level heterogeneity. In this case the random e�ect is across individuals and
constant over time, rather than across groups or clusters; there is only a single individual for
each value of the random e�ect, so that it is shared over time by a single individual, rather
than shared across families or groups. The proportional hazards frailty model for subject i is
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written as

�i(t) = �0(t)eXi�+!i (1)

where Xi is the ith row of the covariate matrix X . X and � correspond to p �xed e�ects in
the model, ! is a vector containing the unknown random e�ects or frailties [20]. The event
times are assumed to be independent conditional on the chosen parametric distribution, so
inference may be made in standard fashion. Scholars are actively investigating how to choose a
distribution and look at the rami�cations of mis-specifying the distribution and determining the
problematic conditions [21, 22], while others focus on how to relax the parametric assumption
altogether [23–25]. Because the hazards are necessarily positive, the distribution is usually
chosen from the class of positive distributions; in applied work, the most widely used are the
gamma, Gaussian, and t distributions, with the gamma being by far the most frequent due to
the �exibility of that distribution [22, 26].
Like the AG model, the baseline hazard rate for the standard frailty model does not vary

by event number, k. However, heterogeneity is directly incorporated via a random e�ect.
Simulations examining the estimates of treatment e�ects in frailty models with gamma dis-
tributed random e�ects �nd that frailty models produce unbiased estimates of covariate e�ects
when the variance of the random e�ect is known [5]. Importantly, these simulations do not
consider data generating processes that also contain event dependence. And simulations de-
signed to examine event dependence and heterogeneity are limited to two events and do not
include frailty models [18].
Frailty models are better than variance-corrected models for dealing with heterogeneity, but

ignore the biasing e�ects induced by event dependence. Lawless [27] sheds some light on the
connection between the strati�ed analysis, which deal with event dependence, and the frailty
model. Speci�cally, with the semi-parametric Gamma–Poison mixture, with conditional rate
�(t|u = u�(t) where u∼G(u;�) with E(u) = 1, var(u) = �, and N () denotes the number
of events and H () denotes the ‘history’ of the process, the marginal intensity function is
given by

lim
�t→0

P(N (t +�t−)− N (t−)|H (t))
�t

= �(t) · 1 + �N (t
−)

1 + ��(t)
(2)

where �(t) =
∫ t
0 �(u) du, which can be seen to ‘jump’ at event occurrence.

Neither frailty nor variance-corrected models present a general modelling strategy for
repeated events processes that are characterized by both event dependence and heterogeneity
(as our simulations show). Nor do they present a reliable solution when analysts are unsure
which features of the data underlie the correlation. Both variance-corrected and frailty models
recognize the problems associated with violations of the independence assumption of the Cox
model. But as currently proposed, variance-corrected and frailty models are inconsistent with
the typical data generating process for repeated events, which feature both event dependence
and heterogeneity. Nor does the literature investigate how well existing models account for
the two di�erent types of correlation. This means that our con�dence in inferences and policy
prescriptions is low. We cannot reliably estimate the e�ects of policies or conditions, for
example, if unobserved or unmeasured characteristics of individuals or their circumstances
a�ect the risk for multiple heart attacks or if heart attacks themselves increase the risk of
future attacks. We seek a modelling solution that is independent of the unknown features of
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the data generating process, i.e. that performs well whether event dependence and=or hetero-
geneity are features of the process of interest. In the next section, we consider the conditional
frailty model as one way to meet this goal.

3. THE CONDITIONAL FRAILTY MODEL

The conditional frailty model combines a random e�ect to incorporate unobserved heterogene-
ity with event-based strati�cation (varying baseline hazards) to incorporate event dependence.
The model is formulated in gap time so that parameter estimates can be interpreted as a risk
estimate for the kth event since the previous event (for right censored failures only).
The hazard or risk of a particular event k occurring for a speci�c individual i, (�ik), for

the conditional frailty model follows from [5, 6]:

�ik(t) = �0k(t − tk−1)eXik�+!i (3)

where k denotes event number; �0k is the baseline hazard rate and varies by event number;
(t − tk−1) incorporates a gap time data structure so that the hazard gives the risk for event k
since the previous event occurred; X is a vector of independent variables, which may be time
varying; and � gives the e�ect parameters. The remaining portion of the hazard incorporates
the random e�ect. Here each subject i has a random e�ect that is shared, i.e. constant, over
time (across events) and ! is a vector containing the unknown random e�ects or frailties [20].
The partial likelihood for this model, conditional on the frailties, follows directly from,

among others, [6] and is given by

L(�) =
n∏
i=1

K∏
k=1

(
eXik�+!i∑n

i=1

∑K
k=1YikeXik�+!i

)�ik
(4)

where k refers to the event number, � is a censoring variable equal to 1 if observed or 0 if
censored, and Y is an at risk indicator, which is equal to 1 when the individual is at risk for
the current event k and 0 otherwise.
The gamma frailty model can be laid out in terms of a penalized partial log likelihood

solution [5, 232–233]. The penalty is imposed so that the individual e�ects do not account
for too much of the �t. The gamma frailty model is equivalent to a penalized Cox model
with penalty function:

p(!) = (1=�)
∑
[!i − exp(!i)] (5)

The !’s are distributed as the logs of iid gamma random variables and the tuning parameter
� is their variance. The correlation of subjects within groups—here a subject over time—
(Kendall’s tau) is �=(2 + �). The unconditional likelihood is then given by equation (4)
multiplied by the relevant penalty function [28, 29]. If the frailties were known, we could, of
course, write out the full likelihood. Given that they are unknown, we have two options. We
can treat them as missing data and use an EM algorithm with the full likelihood, integrating
over an assumed distribution for the !. In this case, the EM algorithm provides an estimate
of the !. Or we can maximize the penalized version of the log of the usual Cox partial
likelihood. Both give the same result for any �xed value of � (see References [5, 28]). There
are advantages for using the penalized version, such as computational speed.
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The conditional frailty model allows for the possibility that both heterogeneity and event
dependence make important contributions to the hazard rate or an individual’s risk for a par-
ticular event (re)occurrence. The conditional frailty gap time model has not been explicitly
compared to other common recurrent event models and seems particularly promising for
addressing both heterogeneity and event dependence because it allows for both an event
speci�c baseline hazard rate and a random e�ect.

4. SIMULATIONS

We use simulations to compare the conditional frailty model and several variance-corrected and
frailty models with a known data generating process that exhibits heterogeneity, event depen-
dence, both, and neither. We focus our comparison on the three most popular and promising
variance-corrected models: the Andersen–Gill, conditional gap time, and conditional elapsed
time models; and the basic frailty model estimated with a gamma random e�ect. We gauge
model performance on three dimensions: the bias in the estimated treatment e�ects as well
as in the estimated variance of the random e�ect, bias in the standard errors, and rate at
which the estimated standard errors includes the true parameter. Our simulations suggest that
the conditional frailty model can estimate the e�ects of both sources of correlation simul-
taneously and retrieve the parameters of the true data generating process better in all four
cases. Further, in the simulations we have investigated, the conditional frailty model performs
similarly to, or better than, the variance-corrected and frailty alternatives. In the case of both
heterogeneity and event dependence, only the conditional frailty model performs well. So, in
cases where there is a possibility of both, and often we cannot rule either out, the conditional
frailty model is recommended.

4.1. Testing the performance of the conditional frailty model

We begin by testing the performance of the conditional frailty model using simulations that
extend those used to evaluate variance-corrected and frailty models in published work. In
particular, Therneau and Grambsch [5] and Kelly and Lim [6] have compared some subset of
the models under a set of conditions in which a constant treatment is given to a random sample
of subjects, unobserved heterogeneity is present, the range of events experienced is from 0 to
some small number, and there is neither event dependence nor time dependence [5, 6]. Our
initial simulations proceed from this data generating process (DGP), but generalize the DGP
further to allow for the addition of event dependent baseline hazard rates. Speci�cally, we
generated data by drawing the time to an individual i’s kth event—tik—from an exponential
distribution with rate �ik :

�ik(t)= �0k(t)eXi�+ui (6)

where �0k is the baseline hazard rate and may vary by k; ui is a random e�ect that allows for
the introduction of heterogeneity; Xi is a dichotomous and time invariant covariate, indicating
for example, whether a subject has received treatment or not; and � is the e�ect parameter
[5, 30]. By drawing from an exponential distribution, we assume that there is no duration
dependence, i.e. that time itself has no e�ect on event rates. This maximizes comparability
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with published work. Satten [31] considers the model for interval-censored recurrent event
data using a parametric approach.
Heterogeneity enters the DGP in the form of the random e�ect, ui. It is set to 0 for the

case of no unobserved heterogeneity or is drawn from a normal distribution with �u=0:6,
1, and 2 across the simulations. The larger variance represents greater heterogeneity and
produces higher correlations in event times. Event dependence enters in the form of the
baseline hazard, �0k . If the baseline is constant across events, there is no event dependence,
�0k = �0 and we have the case considered in previously published work. Event dependence
occurs whenever the baseline hazard is allowed to vary as some function of k. We begin
with a simple form of event dependence, setting �0k = k�0. This produces inter-event times
that decrease as the number of events experienced grows. One can think of this as drawing
from a distribution with baseline hazards that change after each event, producing di�erent and
correlated event-speci�c baseline hazards. In other simulations we consider �0k = (1=k2)�0, so
that event dependence is somewhat weaker.
We initially set a constant treatment e�ect of �1 to −1, the baseline hazard to 1.0 and the

maximum follow-up time to 4. The maximum number of events, here 6, is determined by the
follow-up time and the baseline hazard rate. The set of parameter values we have chosen to
create the simulated data produces a distribution of events that follows those of Reference [5]
and matches those of many clinical studies, re: small numbers of subjects having large numbers
of events, most have few events, etc., over a given typical span of observation (although here
with arti�cial metric). The treatment e�ect chosen is negative, as treatments e�orts typically
reduce event rates, however we note the e�ect of a positive ‘treatment,’ di�erent baseline
hazards, and higher numbers of events in the paper and discuss the �ndings in the results
section.

4.2. Results

We generate 1000 data sets following equation (6) and estimate the conditional frailty model
and each of the four models identi�ed above: three variance-corrected models (Anderson–
Gill, conditional elapsed time, conditional gap time); and a frailty model with a gamma
random e�ect. All the data was simulated and models estimated in R=S+ using the basic
survival package in R. We investigate any biases and evaluate inferences to assess model
performance. Speci�cally, we focus our attention on the model estimates of �, the standard
errors, and estimates of the random e�ect for the frailty models. Results are presented in
Table I. We consider a broader array of models and DGPs than the previous literature in
our comparisons. For example, Kelly and Lim [6] only consider variance-corrected models.
We present results here for the case where �u=1 and event dependence is positive and
linear in the baseline hazard. Results for �u=0:6 reveal the same pattern in results, but
with more attenuated di�erences. Results for �u=2 produce more dramatic di�erences for
the conditions with heterogeneity and provide stronger evidence for the conditional frailty
model. Alternative forms of event dependence support our conclusion that the conditional
frailty model is preferred.

4.2.1. Heterogeneity. Heterogeneity in the data means that some people have higher, and
others lower, event rates for some unknown or unmeasured reason. This has two implications.
First, it means that event prone individuals will dominate the sample of individuals at risk for
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Table I. Simulation results for N =100, �=− 1:0, �=1:0, and baseline hazard =1:0.
Standard Coverage Rejection

�̂ Std dev error rate �̂ rate �

Panel A: No event dependence, heterogeneity
Conditional frailty, gap −0.9856 0.2762 0.2347 0.8990 0.9418 0.9900
Frailty, elapsed −0.9708 0.2542 0.2259 0.9030 0.8746 1.0000
Andersen–Gill −0.7491 0.1920 0.1875 0.7410
Conditional, gap −0.5520 0.1516 0.1471 0.1550
Conditional, elapsed −0.4821 0.1410 0.1353 0.0520

Panel B: Event dependence, no heterogeneity
Conditional frailty, gap −1.0119 0.1007 0.1006 0.9510 0.0056 0.0100
Frailty, elapsed −1.6867 0.1859 0.1572 0.0080 0.3690 1.0000
Andersen–Gill −1.2986 0.1458 0.1404 0.4340
Conditional, gap −1.0047 0.0983 0.0969 0.9480
Conditional, elapsed −1.0120 0.1185 0.1105 0.9370

Panel C: Event dependence and heterogeneity
Conditional frailty, gap −0.9860 0.2502 0.2145 0.9040 0.8309 1.0000
Frailty, elapsed −1.4081 0.4004 0.2940 0.6500 1.8283 1.0000
Andersen–Gill −0.7083 0.1747 0.1708 0.5830
Conditional, gap −0.5238 0.1351 0.1287 0.0520
Conditional, elapsed −0.3948 0.1148 0.1057 0.0010

Panel D: No event dependence, no heterogeneity
Conditional frailty, gap −1.0214 0.1636 0.1540 0.9480 0.0142 0.0150
Frailty, elapsed −1.0053 0.1424 0.1399 0.9440 0.0167 0.0390
Andersen–Gill −1.0018 0.1418 0.1362 0.9400
Conditional, gap −1.0086 0.1562 0.1486 0.9400
Conditional, elapsed −1.0103 0.1590 0.1505 0.9534

Notes: Reported standard errors for the Andersen–Gill, conditional elapsed time and conditional gap time
models are all robust standard errors:

V= I−1BI−1 (7)

where I−1 is the usual variance estimate of a Cox model (the inverse of the information matrix I) and B is
a correction factor based on the correlation within cases [32]. Standard errors for the frailty and conditional
frailty models follow Gray [33] V = H−1IH−1. H is the second derivative matrix for the penalized likelihood.

large numbers of events. When treatment e�ectively reduces event rates for all individuals,
the conditional event rates in the treatment group will become higher as the number of events
increases due to the dominance of these people in higher strata. This makes treatment look
less e�ective than it really is, introducing negative bias. In contrast, if treatment increases
event rates, i.e. �=1, the situation is reversed: the conditional probability of an event in the
treatment is smaller than the control arm (there are more cases with smaller numbers of events
in the treatment group than in the control group). This means that positive treatment looks less
e�ective, too. Second, in addition to the bias introduced by imbalance in the treatment arms,
we expect models that do not directly incorporate heterogeneity in the estimation stage—all
the variance-corrected models—will perform particularly poorly. The frailty and conditional
frailty models correct for the heterogeneity in the estimation stage and should thus produce
better estimates.
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Heterogeneity has been the focus of attention in simulations [5, 6]. Table I, panel A, shows
the expected downward bias in each of the models, especially in the conditional gap and
elapsed models. The statistically signi�cant estimate of the frailty term is more accurate,
0.94, for the conditional frailty model than for the frailty model. We draw four general
conclusions from these simulations. First, correcting for standard errors in the presence of
heterogeneity is not enough—bias results from the imbalance in the data if the analyst does not
control for heterogeneity. Second, controlling for heterogeneity by estimating a random e�ect
enhances model performance substantially, speci�cally by reducing the bias in the estimated �.
Thus both the standard frailty and conditional frailty models give better estimates of the
treatment e�ect than the alternative models. Third, the robust standard errors are smaller than
the standard deviation of the estimated �̂ for all models. Of course, the frailty and conditional
frailty model standard deviations of �̂ are larger than in the remaining models because more
parameters are estimated. The standard errors do improve as N increases. Fourth, stratifying
is problematic unless a random e�ect is also estimated—conditional models exhibit large
biases as the strati�cation attempts to pick up the heterogeneity. Because the conditional
model controls for the heterogeneity, adding the strati�cation to the frailty model does not
induce bias.

4.2.2. Event dependence. The next two conditions (event dependence as well as event
dependence and heterogeneity) constitute extensions to the DGPs examined in the current
body of experimental work. The independence assumption of the Cox model is violated as a
result of event dependence; the true data generating process has baseline hazard rates that vary
by event number. Therefore, we expect models that stratify by event number will necessarily
perform better than models that do not. More speci�cally, by omitting strata, the AG and
frailty models must average e�ects across event numbers. In general, these averages will be
biased and increase the more separation there is among the hazard rates across the number
of events.
Table I, panel B, shows the expected, large upward bias, which ranges from about 30

per cent for the AG model to over 68 per cent for the frailty model. This bias is explained by
imbalance in the treatment and control groups as well, but importantly the patterns produced
by event dependence are distinct from those produced by heterogeneity. Speci�cally, if the
treatment reduces event rates, event dependence means that the control group will have more
cases having larger numbers of events relative to the treatment group. The end result is that the
treatment designed to reduce event rates looks more e�ective than it is. The same is true for
a treatment or covariate with a positive e�ect. More cases have more events in the treatment
group, making the e�ect look even bigger. Because more events occur in later strata, the
e�ects look bigger unless we correctly incorporate the shift in the baseline hazard. Because
the conditional frailty models stratify, this bias does not occur.
The true variance of the random e�ect is zero in this data generating process. Yet for the

frailty models that do not stratify, the random e�ect necessarily picks up the correlation in
events. In contrast, the conditional frailty model (frailty with strati�cation) accurately reveals
the random e�ect to be zero.
In short, our preliminary results caution against the current recommendation by Therneau

and Grambsch [5] for the AG model. When the data exhibit event dependence, strati�cation is
essential. The addition of the random e�ect in the conditional frailty model, does not appear
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to come at any cost. That is, the conditional frailty model correctly estimates the variance
of the random e�ect to be zero while producing a relatively unbiased estimate of treatment
e�ects.

4.2.3. Event dependence and heterogeneity. The condition of joint event dependence and
heterogeneity is the most important to consider for two reasons. First, it seems likely that both
sources of correlation may simultaneously describe many of the processes that we care about.
Second, even if only one source of correlation exists, we typically cannot know which source
drives the correlation a priori and therefore do not know which model to use [20, 30, 34, 35].
We know that heterogeneity biases e�ects toward zero due to the imbalance in the number

of events that occur in the treatment and control groups. If in addition to heterogeneity, we
also have positive event dependence, this problem will be exacerbated. Speci�cally, even
fewer cases experience small numbers of events and more cases experience large numbers of
events under event dependence, magnifying imbalance. In particular, if the true treatment is
negative, then the control group will have more cases with more events and fewer people with
zero (and small numbers of) events. This means that the conditional probability of having
an event in the control group becomes less than in the treatment group after a small number
of events and thus treatment looks less e�ective than it is—e�ects are biased toward zero.
The same bias toward zero occurs with positive treatment as well. In this case, the imbalance
is reversed and the conditional probability of having another event, given that the subject
has had one or two is higher in the control group than in the treatment group, because so
few have no or one event. In other words, the probability of treated cases having subsequent
events conditional on having had k events is smaller than in the control arm; the control arm
has a higher probability of more events than the treatment. This means that the treatment
e�ect will be biased toward zero.
The simulation results suggest that two things occur when we have both event dependence

and heterogeneity, and they work to adversely a�ect the estimates from the conditional models
(see Table I, panel C). First, as noted above, event dependence exacerbates the problems
with the conditional models that are due to heterogeneity. So while the conditional models
clearly outperform the marginal models for event dependence alone, they do not do well
with heterogeneity. Second, as expected, in models that do not stratify by event number, the
varying baseline hazards are averaged. In general, this averaging produces biased estimates.
The conditional frailty model performs the best for the condition of event dependence

and heterogeneity, showing that the e�ects of both can be simultaneously and distinctly well
estimated. The conditional frailty model strati�es by event, controlling for event dependence,
and allows for the estimation of a random e�ect, controlling for the heterogeneity. In doing
so, the conditional frailty models have very little bias in either � or �.
We present the densities of the estimated treatment e�ects for each of the �ve models

in Figure 1. While the estimates using the conditional frailty model are less tightly clus-
tered around −1:0 then we would like, the mass is centered around the true value. Further,
when compared to the alternatives estimators, the majority of the estimates are closer to the
true value.

4.2.4. No event dependence or unobserved heterogeneity. We end our simulations by gener-
ating data that is consistent with the assumptions of the Cox model; there is no unobserved
heterogeneity and no event dependence. In this case, all the estimated models should be
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Figure 1. Densities of the estimated � (heterogeneity and event dependence, N =100). The densities
of the estimated e�ects, �̂, are calculated for conditions under which the �0 = 1:0, �=1:0, �=− 1,
�0k = k�0, the maximum follow up time is 4. The maximum number of events, which is determined by

the baseline hazard and the follow-up time, is 6.

unbiased and the standard errors should be close to the standard deviation. Estimators that
allow for varying baseline hazards or that estimate a random e�ect should, however, be less
e�cient than estimators that do not, given that they require the estimation of an additional
parameter(s). The conditional frailty models, by allowing for both event dependence and het-
erogeneity should be the least e�cient. Table I, panel D, shows that our expectations for these
simulations are largely born out in the data. Most importantly, the only cost associated with
using the conditional frailty model when there is no correlation in the data is a slight loss of
e�ciency.

4.2.5. Extensions. In addition to the simulations reported here, we examined the performance
of these models setting the baseline hazard to 0.10. This produces times between events that
are quite long in the case of no dependence and no heterogeneity so that very few events
occur within the sample period. When we add heterogeneity and=or event dependence, the
event times and average number of events change, with more events occurring more quickly.
These simulations reveal three interesting �ndings. First, the bias in �̂ across the estimators
is larger than can be explained by the Monte Carlo uncertainty. Second, the estimators reject
the null hypothesis on �̂ at frequencies well below the nominal 95 per cent rate, ranging
from 77.9 to 79.5 per cent. Third, the estimated variance of the random e�ect, �, is of-
ten very biased and the true null is rejected almost 95 per cent of the time for the frailty
gamma model. The conditional frailty gamma model estimate of � has a much larger bias,
but the null that �=0 is rejected at rates near the nominal 5 per cent level. The former two
problems are explained by the small number of cases experiencing multiple events and there-
fore producing a rare events bias and imprecise estimates. In simulations using the larger
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Figure 2. Impact of number of events on estimated �. For all conditions, the baseline hazard �0 = 1:0
and �=− 1. Under conditions of heterogeneity, a random e�ect was added in which �=1:0. Under

event dependence, �0k was set to k�0.

baseline hazard rate, a smaller proportion of the sample experiences no events and these
�ndings disappear.

4.2.6. Gap time versus elapsed time. We have compared the traditional frailty model, which
is speci�ed in elapsed time, and the conditional frailty model, which we chose to specify
in gap time [6, 18, 36]. It is important to remember that the interpretation of the estimated
parameters from a gap time and elapsed time model di�er (see References [37, 38]). A natural
question arises then about whether the superior performance of the conditional frailty model
is due to the formulation of the risk set in gap time rather than strati�cation also playing a
major role under certain conditions. We performed additional simulations to compare a gap
time frailty model with the conditional frailty gap time model. The only di�erence in these
simulations is the presence of strati�cation in the conditional frailty model. The two models
perform similarly for two conditions: (a) heterogeneity only and (b) no heterogeneity and
no event dependence. However, the existence of event dependence demonstrates the superior
performance of the conditional frailty gap time model over a broad range of conditions.
Speci�cally, Figure 2 presents the mean estimated � for each of these two models across a
range of maximum numbers of events and a �xed follow-up time. We varied the maximum
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number of events from 2 to 12 with a constant follow-up period of 50 time points. As the
number of events increase, the conditional frailty model performance increases relative to the
gap time frailty model.

5. APPLICATIONS

We present two applications of the conditional frailty model using data from References [5, 39].
The �rst application examines the e�ect of interferon gamma on patients with chronic granu-
lomatous disease (cgd), a heterogeneous group of uncommon inherited disorders that manifest
in recurrent pyogenic infections. The data are from a double-blind placebo-controlled trial in
128 patients with cgd. In addition to interferon gamma, age at start of the study, pattern of
inheritance, and use of corticosteriods are included in the models.
Table II presents estimates for the treatment for the AG, conditional elapsed and conditional

gap time, frailty, and conditional frailty gap time models. The largest estimated e�ect is found
in the AG model, followed by the frailty model. The remaining models all estimate a similar
and smaller e�ect. This pattern suggests that infection risk is event dependent, speci�cally that
infection occurrence makes reoccurrence more likely. There is no evidence of heterogeneity in
the conditional frailty model (the variance of the random e�ect is not statistically signi�cant,
p = 0:930). In contrast, �̂ is signi�cant at �¡0:10, with p=0:065 in the frailty model, but this
is not surprising as the estimated random e�ect will pick up the e�ects of event dependence as
shown in our simulation patterns. The cumulative baseline hazards for the conditional gap time
and conditional frailty gap time models present further evidence that only event dependence
underlies infection rates. The �gures of the cumulative baseline hazards (not shown) are
virtually identical, as we would expect when there is no heterogeneity, since both models
nest the true data generating process. The separation of the baseline hazards by event number
also con�rms the existence of event dependence.
The cystic �brosis example looks at the e�ects of rhDNase—pulmozyme (DNase I), a

cloned and highly puri�ed recombinant DNase I designed to mimic that produced by the
human body, deoxyribonuclease—on the incidence of pulmonary exacerbations. The double-
blind, placebo-controlled study was conducted in 1992. We estimate all �ve models for 956
patients with cystic �brosis. Here we �nd a di�erent pattern in the estimated treatment e�ects
(see Table III). The conditional frailty model �nds the largest e�ect, followed closely by the
frailty model, the two conditional models estimate the smallest e�ect. We note that the variance
of the random e�ect is statistically signi�cant for both the conditional frailty and frailty model,

Table II. E�ects of inteferon gamma in patients with chronic granulotamous disease.

Model Estimate Robust standard error �̂ p-value

Conditional frailty gap −0.8997 0.2818 0.0000 0.9300
Frailty, elapsed −1.0286 0.2643 0.6109 0.0650
Andersen–Gill −1.0998 0.3093 NA NA
Conditional gap −0.8997 0.2978 NA NA
Conditional elapsed −0.9047 0.3018 NA NA
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Table III. E�ects of DNase I (rhDNase I, pulmozyme) in patients with cystic �brosis.

Model Estimate Robust standard error �̂ p-value

Conditional frailty gap −0.3727 0.1128 2.0713 0.0000
Frailty, elapsed −0.3331 0.1083 1.1953 0.0000
Andersen–Gill −0.2951 0.1312 NA NA
Conditional elapsed −0.2153 0.1125 NA NA
Conditional gap −0.2161 0.1083 NA NA
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Figure 3. Estimated cumulative hazard, DNase rx and fev. The top panel presents cumulative hazards by
event as estimated from the conditional gap time model. The bottom panel presents the same cumulative

hazards when the model estimated is the conditional frailty model also in gap time model.

suggesting that heterogeneity is present. The size of the variance of the random e�ect is
estimated at 2.07 and 1.19, respectively. The di�erence in the estimated e�ect of treatment in
these two models suggest that either heterogeneity and event dependence or only heterogeneity
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underlie the true data generating process. Graphs of the cumulative hazards clarify which
condition best re�ects the data. A graph of the cumulative hazard function by event number
from the conditional gap time model (top panel Figure 3) suggests that the baseline hazard
varies by event number, however, heterogeneity will masquerade as event dependence when
heterogeneity itself is not modelled. Comparing with a graph of the cumulative hazards by
event number from the conditional frailty model (bottom panel Figure 3) suggests that there
is little or no event dependence in the data—the hazards do not vary signi�cantly by event
number once heterogeneity is incorporated into the model. For medical reasons, one might
expect event dependence, but the subject enrolment process means that we have no information
on the number of pulmonary exacerbations prior to the study. Thus, we are cautious about the
generality of the conclusion of no event dependence in other studies of this disease because
of the lack of information prior to enrolment.
These results suggest that using the conditional frailty model not only better allows the

analyst to capture the e�ects of both heterogeneity and event dependence, but also helps us to
diagnosis the source of correlation in the data. By comparing the magnitude of the estimated
e�ects across the models and then by graphing estimated cumulative baseline hazard rates
and comparing patterns across the models, we can triangulate the information to identify the
source of correlation.

6. DISCUSSION AND CONCLUSIONS

Our work sheds light on the ability of estimators to capture both event dependence and
unobserved heterogeneity. Variance-corrected models directly model event dependence through
strati�cation, while attempting to account for heterogeneity with ex post �xes to the standard
errors. However, our simulations show that these models fall short given heterogeneity. In
contrast, frailty models directly estimate the e�ects of heterogeneity while ignoring event
dependence and thus similarly fall short. Yet repeated events data are likely to exhibit both
event dependence and heterogeneity. Certainly it is unlikely we can rule either out a priori.
Under these conditions, a modelling strategy that is robust to both heterogeneity and event
dependence is desirable. We recommend the conditional frailty model.
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