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Supporting Material: Proofs

Competitive equilibrium

Each member  ∈ [1 ] chooses her level of  ≥ 0 to maximize her utility  = 
√
−

P
 6= −

 a function that is twice-differentiable and concave. Assuming  ≥ 0 to be the Lagrangian

parameters, the optimal level of  
#
  satisfies the necessary and sufficient first-order conditions


1
2

− 1
2

 −  +  = 0 and the Kuhn-Tucker conditions  = 0 for any  ∈ [1  ], thus forming
a system of 2 equations and 2 variables ( and ). There is no solution possible in which,

for any member  ∈ [1  ],   0 because it would imply 
#
 = 0 making the corresponding

first-order condition indeterminate. Therefore, the only possible determinate solution has  = 0

and 
#
 =

¡

2

¢2
for all  ∈ [1 ] 

Social optimum

In any Pareto optimal allocation, the optimal level of  
◦
  must maximize the joint surplus of the

 members and so must solve max
≥0∈[1 ]

P
=1
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P
 6=   This problem gives

the necessary and sufficient first-order conditions 
1
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 − − ( − 1) +  = 0, with  ≥ 0 the
Lagrangian parameters, and the Kuhn-Tucker conditions  = 0 for all  ∈ [1 ]. The problem
is solved like the precedent, yielding interior solution ◦ =

³


2(+(−1))
´2
for all  ∈ [1  ] 

Solving program 

The subsidy rate. We start by determining the optimal subsidy rate, ∗ The rate must satisfy

two conditions: first, it must be large enough to entice each member to abandon the competitive

equilibrium for the social optimum; second, it must be high enough to deter any member from

defecting to the competitive equilibrium while holding constant the optimal activity of other mem-

bers. To meet the first condition,  must make the equilibrium activity under the socially optimal

equilibrium at least equal to the equilibrium activity under the competitive equilibrium. Compar-

ing the first-order conditions for each equilibrium (see above), it is straightforward to see that the
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condition for the optimal equilibrium is the same as that for the competitive equilibrium minus

expression ( − 1)  Therefore, ∗ ≥ ( − 1) 
To meet the second condition, the incentive constraint in program  must be met for ∗ = ◦ .

This means that 
p
◦ − 

P
 6= 

◦
 − ◦ + 
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 − 

#
  Substituting

the values of 
#
 and ◦ into the constraint yields 

∗ ≥ (−1)
2+(−1)  Since the right hand side term is

smaller than ( − 1)  it follows that this second constraint is not binding, only the first is, and
thus ∗ = ( − 1) 

Convexity. To show that program  is convex with respect to  and thus has a fixed-point

solution, one needs to show that the founder’s utility function, in which we have substituted the

values for 
#
  

◦
  and 

∗, is concave with respect to variables  and . Concavity requires that for any

pair of distinct points (1 1) and (2 2) in the domain of   and for 0    1 the following weak

inequality holds:  (1 1) + (1− ) (2 2) ≤  ( (1 1) + (1− ) (2 2))  Developing

 and rearranging yields  = 3+2++3+2++ with  = −1
6
  = 1
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 =  + 1
24
  = − 1

12
  = −  =  −   = − and  = 2 ( − 1)2 2 2+(−1)

2(+(−1))2 

This and all subsequent calculations use the functional form for a member’s marginal gain

 = 

Concavity thus requires 
¡
31 +21 + 1 +31 +21 + 1 +

¢
+ (1− )¡

32 +22 + 2 +32 +22 + 2 +
¢ ≤  (1 + (1− )2)

3+ (1 + (1− )2)
2+ (1 + (1− )2)

+ (1 + (1− ) 2)
3+ (1 + (1− ) 2)

2+ (1 + (1− ) 2)+ Rearranging and simplify-

ing, one obtains (1 − 2)
2 ((1 (1 + ) + 2 (2− ))+)+(1 − 2)

2 ((1 (1 + ) + 2 (2− )) −) ≤
0 which is true since both components of the addition are negative. The first term is negative be-

cause +  0 and ’s coefficient is greater than one, while the second term is negative because

  0, and both 0s coefficient and  are positive. It follows that  is concave with respect to

 and  and that there exists a unique internal maximum (∗ ∗).

Lower and Upper Bounds of ∗ Since ∗ is the unique maximum over the relevant do-

main, it yields a utility to the founder that is greater than the utility yielded either by ∗ −
1 or by ∗ + 1 Formally, we have  () ≥  (+ 1) and  () ≥  (− 1)  After de-
veloping and rearranging terms in each inequality, we obtain a lower and an upper bound for

∗ of the form  ≤  ≤  with  = 1
4
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 Given that  + 1 =  and that ∗ is an inte-

ger, the value of ∗ may fall anywhere in the closed interval [ ] 

Lower and Upper Bounds of ∗ The equilibrium value is what makes the founder indifferent

between extending the offer to  member and earning  −∗
³

#
 − ◦

´
− and not extending the

offer and earning 0 Equating the two outcomes and substituting the corresponding values for trans-

fer and investment into the equation yields the upper bound value  = 2 


√
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and thus the lower bound value  = 2 
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Domain. Since ∗ must fall in interval [1  ]  we infer the domain of the function for which

this result is verified.  ≥ 1 yields condition  ≥ 3
4
22 ( − 1)2 2+(−1)

2(+(−1))2 ≡   while

 ≤  yields condition  ≤ 1
4
22 (2 − 1) ( − 1)3 2+(−1)

2(+(−1))2 ≡    ≥ 1 yields  ≤  −
1
4
222 ( − 1)2 2+(−1)

2(+(−1))2 ≡  , while  ≤  yields  ≥  − 22 ( − 1)2 2+(−1)
2(+(−1))2 ≡  

Also, ∗ =

⎧⎪⎨⎪⎩  if   

1 if   

while ∗ =

⎧⎪⎨⎪⎩  if   

1 if   

 One last condition must be met:

 = arg solve ≤  ≡ b  Too long to be reported here, this condition is available from the authors.
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