Multilateralism, Bilateralism and Regime Design ALEXANDER THOMPSON AND DANIEL VERDIER International Studies Quarterly forthcoming Supporting Material: Proofs

Competitive equilibrium

Each member $i \in [1, N]$ chooses her level of $s_i \ge 0$ to maximize her utility $u_i = a_i \sqrt{s_i} - \rho \sum_{j \ne i} s_j - cs_i$, a function that is twice-differentiable and concave. Assuming $\lambda_i \ge 0$ to be the Lagrangian parameters, the optimal level of s_i , $s_i^{\#}$, satisfies the necessary and sufficient first-order conditions $a_i \frac{1}{2} s_i^{-\frac{1}{2}} - c + \lambda_i = 0$ and the Kuhn-Tucker conditions $s_i \lambda_i = 0$ for any $i \in [1, N]$, thus forming a system of 2N equations and 2N variables $(s_i \text{ and } \lambda_i)$. There is no solution possible in which, for any member $i \in [1, N]$, $\lambda_i > 0$, because it would imply $s_i^{\#} = 0$, making the corresponding first-order condition indeterminate. Therefore, the only possible determinate solution has $\lambda_i = 0$ and $s_i^{\#} = (\frac{a_i}{2c})^2$ for all $i \in [1, N]$.

Social optimum

In any Pareto optimal allocation, the optimal level of s_i , s_i° , must maximize the joint surplus of the N members and so must solve $\max_{s_i \ge 0, i \in [1,N]} \sum_{i=1}^{N} \left(a_i \sqrt{s_i} - cs_i \right) - \sum_{i=1}^{N} \rho \sum_{j \ne i} s_j$. This problem gives the necessary and sufficient first-order conditions $a_i \frac{1}{2} s_i^{-\frac{1}{2}} - c - (N-1)\rho + \gamma_i = 0$, with $\gamma_i \ge 0$ the Lagrangian parameters, and the Kuhn-Tucker conditions $s_i \gamma_i = 0$ for all $i \in [1, N]$. The problem is solved like the precedent, yielding interior solution $s_i^{\circ} = \left(\frac{a_i}{2(c+\rho(N-1))}\right)^2$ for all $i \in [1, N]$.

Solving program P

The subsidy rate. We start by determining the optimal subsidy rate, t^* . The rate must satisfy two conditions: first, it must be large enough to entice each member to abandon the competitive equilibrium for the social optimum; second, it must be high enough to deter any member from defecting to the competitive equilibrium while holding constant the optimal activity of other members. To meet the first condition, t must make the equilibrium activity under the socially optimal equilibrium at least equal to the equilibrium activity under the competitive equilibrium. Comparing the first-order conditions for each equilibrium (see above), it is straightforward to see that the condition for the optimal equilibrium is the same as that for the competitive equilibrium minus expression $(N-1)\rho$. Therefore, $t^* \ge (N-1)\rho$.

To meet the second condition, the incentive constraint in program P must be met for $s_i^* = s_i^\circ$. This means that $a_i \sqrt{s_i^\circ} - \rho \sum_{j \neq i} s_j^\circ - cs_i^\circ + t \left(s_i^\# - s_i^\circ\right) \ge a_i \sqrt{s_i^\#} - \rho \sum_{j \neq i} s_j^\circ - cs_i^\#$. Substituting the values of $s_i^\#$ and s_i° into the constraint yields $t^* \ge \frac{c(N-1)\rho}{2c+(N-1)\rho}$. Since the right hand side term is smaller than $(N-1)\rho$, it follows that this second constraint is not binding, only the first is, and thus $t^* = (N-1)\rho$.

Convexity. To show that program P is convex with respect to x and thus has a fixed-point solution, one needs to show that the founder's utility function, in which we have substituted the values for $s_i^{\#}$, s_i° , and t^* , is concave with respect to variables x and y. Concavity requires that for any pair of distinct points (x_1, y_1) and (x_2, y_2) in the domain of U_P , and for $0 < \theta < 1$, the following weak inequality holds: $\theta U_P(x_1, y_1) + (1 - \theta) U_P(x_2, y_2) \le U_P(\theta(x_1, y_1) + (1 - \theta)(x_2, y_2))$. Developing U_P and rearranging yields $U_P = Ax^3 + Bx^2 + Cx + Dy^3 + Ey^2 + Fy + G$ with $A = -\frac{1}{6}R$, $B = \frac{1}{8}R$, $C = T + \frac{1}{24}R$, $D = -\frac{1}{12}R$, E = -B, F = V - C, G = -T, and $R = \rho^2 (N - 1)^2 a^2 \frac{2c + \rho(N - 1)}{c^2(c + \rho(N - 1))^2}$.

This and all subsequent calculations use the functional form for a member's marginal gain $a_i = ai$.

Concavity thus requires $\theta \left(Ax_1^3 + Bx_1^2 + Cx_1 + Dy_1^3 + Ey_1^2 + Fy_1 + G\right) + (1 - \theta)$ $\left(Ax_2^3 + Bx_2^2 + Cx_2 + Dy_2^3 + Ey_2^2 + Fy_2 + G\right) \leq A \left(\theta x_1 + (1 - \theta) x_2\right)^3 + B \left(\theta x_1 + (1 - \theta) x_2\right)^2 + C \left(\theta x_1 + (1 - \theta) x_2\right)$ $+ D \left(\theta y_1 + (1 - \theta) y_2\right)^3 + E \left(\theta y_1 + (1 - \theta) y_2\right)^2 + F \left(\theta y_1 + (1 - \theta) y_2\right) + G$. Rearranging and simplifying, one obtains $(x_1 - x_2)^2 \left((x_1 (1 + \theta) + x_2 (2 - \theta)) A + B) + (y_1 - y_2)^2 \left((y_1 (1 + \theta) + y_2 (2 - \theta)) D - B\right) \leq$ 0, which is true since both components of the addition are negative. The first term is negative because A + B < 0 and A's coefficient is greater than one, while the second term is negative because D < 0, and both D's coefficient and B are positive. It follows that U_P is concave with respect to x and y and that there exists a unique internal maximum (x^*, y^*) .

Lower and Upper Bounds of x^* . Since x^* is the unique maximum over the relevant domain, it yields a utility to the founder that is greater than the utility yielded either by $x^* - 1$ or by $x^* + 1$. Formally, we have $U_P(x) \ge U_P(x+1)$ and $U_P(x) \ge U_P(x-1)$. After developing and rearranging terms in each inequality, we obtain a lower and an upper bound for x^* of the form $\underline{x} \le x \le \overline{x}$, with $\underline{x} = \frac{1}{4} \frac{\sqrt{(a^2 \rho^3 (N-1)^3 + 32Tc^2 (c+\rho(N-1))^2 + 2ca^2 \rho^2 (N-1)^2)}}{a\rho(N-1)\sqrt{2c+\rho(N-1)}} - \frac{1}{4}, \overline{x} = \frac{1}{4} \sqrt{(a^2 \rho^3 (N-1)^3 + 32Tc^2 (c+\rho(N-1))^2 + 2ca^2 \rho^2 (N-1)^2)}}$

 $\frac{1}{4} \frac{\sqrt{\left(a^2 \rho^3 (N-1)^3 + 32T c^2 (c+\rho(N-1))^2 + 2ca^2 \rho^2 (N-1)^2\right)}}{a\rho(N-1)\sqrt{2c+\rho(N-1)}} + \frac{3}{4}.$ Given that $\underline{x} + 1 = \overline{x}$ and that x^* is an integer, the value of x^* may fall anywhere in the closed interval $[\underline{x}, \overline{x}]$.

Lower and Upper Bounds of y^* . The equilibrium value is what makes the founder indifferent between extending the offer to y^{th} member and earning $V - t^* \left(s_y^{\#} - s_y^{\circ}\right) - T$ and not extending the offer and earning 0. Equating the two outcomes and substituting the corresponding values for transfer and investment into the equation yields the upper bound value $\overline{y} = 2\frac{c}{a\rho}\frac{\sqrt{V-T}}{\sqrt{2c+\rho(N-1)}}\frac{c+\rho(N-1)}{N-1}$, and thus the lower bound value $\underline{y} = 2\frac{c}{a\rho}\frac{\sqrt{V-T}}{\sqrt{2c+\rho(N-1)}}\frac{c+\rho(N-1)}{N-1} - 1$. The value of y^* may fall anywhere in the closed interval $[\underline{y}, \overline{y}]$.

Domain. Since x^* must fall in interval [1, N], we infer the domain of the function for which this result is verified. $\underline{x} \ge 1$ yields condition $T \ge \frac{3}{4}a^2\rho^2 (N-1)^2 \frac{2c+\rho(N-1)}{c^2(c+\rho(N-1))^2} \equiv \underline{T}$, while $\overline{x} \le N$ yields condition $T \le \frac{1}{4}a^2\rho^2 (2N-1)(N-1)^3 \frac{2c+\rho(N-1)}{c^2(c+\rho(N-1))^2} \equiv \overline{T}$. $\underline{y} \ge 1$ yields $T \le V - \frac{1}{4}N^2a^2\rho^2 (N-1)^2 \frac{2c+\rho(N-1)}{c^2(c+\rho(N-1))^2} \equiv \overline{T}$, while $\overline{y} \le N$ yields $T \ge V - a^2\rho^2 (N-1)^2 \frac{2c+\rho(N-1)}{c^2(c+\rho(N-1))^2} \equiv \underline{T}$. Also, $x^* = \begin{cases} N & \text{if } T > \overline{T} \\ 1 & \text{if } T < \underline{T} \end{cases}$ while $y^* = \begin{cases} N & \text{if } T < \underline{T} \\ 1 & \text{if } T > \overline{T} \end{cases}$. One last condition must be met:

 $T = \arg \operatorname{solve} \underline{x} \leq y \equiv \widehat{T}$. Too long to be reported here, this condition is available from the authors.