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Duration Models and Proportional Hazards

in Political Science

Janet M. Box-Steffensmeier The Ohio State University
Christopher J. W. Zorn Emory University

A key assumption of nearly all widely
used duration models is that the
hazard ratios (i.e., the conditional
relative risks across substrata) are
proportional to one another and that
this proportionality is maintained over
time. Estimation of proportional haz-
ards models when hazards are non-
proportional results in coefficient
biases and decreased power of sig-
nificance tests. Techniques for relax-
ing this assumption allow scholars to
test whether the effects of covariates
change over time and also permit a
more nuanced understanding of the
phenomenon being studied. We ad-
dress the potential problems with
incorrectly assuming proportionality,
illustrate a number of tests for non-
proportionality, and conclude with a
discussion of how to accurately and
efficiently estimate these models in
the presence of nonproportional haz-
ards. We investigate the proportional-
ity assumption for Cox's semipara-
metric model in the context of the
“liberal peace” debate, using data on
international conflict in the postwar
period.
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n recent years political scientists have increasingly adopted a wide

range of techniques for modeling duration data. But while the use of

duration models by political scientists has increased dramatically, a
concomitant examination of the modeling assumptions underlying these
methods has not accompanied this growth. An important characteristic of
most of these models is the assumption that the relative hazards over differ-
ent covariate values are proportional. This consideration is important be-
cause, as has been widely shown in the statistics literature, estimation of
proportional hazards models when hazards are, in fact, nonproportional
can result in biased estimates, incorrect standard errors, and faulty in-
ferences about the substantive impact of independent variables (e.g.,
Kalbfleisch and Prentice 1980; Schemper 1992; Collett 1994; Klein and
Moeschberger 1997).

But while the proportional hazards assumption is central to the proper
estimation and interpretation of these models, it has received little atten-
tion by political scientists modeling duration data. This is unfortunate be-
cause, absent explicit examinations of the validity of these assumptions, the
reader is often unable to infer whether or not the assumption holds for any
particular analysis. This difficulty is exacerbated by the fact that, in many
circumstances, both substantive theories and empirical data suggest that
the assumption itself is of dubious accuracy. In fact, it is often the case that
many substantively interesting hypotheses imply time-dependence or other
forms of nonproportionality in the conditional probability of failure. Thus,
it is important that, as political scientists begin to use these models more
often in applied research, they take care to examine the extent to which this
assumption is consistent with their data and to be aware of methods for
analyzing duration data in which hazards are not proportional.

Janet M. Box-Steffensmeier is Associate Professor of Political Science, The Ohio State
University, Columbus, OH 43210-1373 (jboxstef+@osu.edu). Christopher J. W. Zorn is
Assistant Professor of Political Science, Emory University, Atlanta, GA 30322 (czorn@
emory.edu). ' '

Thanks to Neal Beck, Brad Jones, Lanny Martin and Dan Reiter for helpful comments.
Box-Steffensmeier thanks the National Science Foundation for support via a Mid-
Career Methodological Opportunities Grant, number SES-0083418, and Zorn thanks
the John M. Olin Foundation for a Faculty Fellowship supporting this research. A pre-
vious version of this article was presented at the 1998 Annual Meeting of the Midwest
Political Science Association. All analyses were performed in Stata 6.0 and S-Plus 2000;
data are available from the authors at http://www.emory.edu/POLS/zorn/Data/
index.html.

American Journal of Political Science, Vol. 45, No. 4, October 2001, Pp. 972-988
©2001 by the Midwest Political Science Association



DURATION MODELS AND PROPORTIONAL HAZARDS IN POLITICAL SCIENCE 973

The plan of our article is as follows. We first discuss
the proportional hazards assumption in the abstract,
showing what it means for our expectations about the
impact of covariates on the conditional hazard. We also
discuss forms of nonproportionality, considering ex-
amples when we might expect deviations from propor-
tionality to be the norm rather than the exception. We go
on to address the impact of nonproportionality in Cox’s
(1972) semiparametric proportional hazards model.! We
discuss tests for proportionality, both graphical and sta-
tistical, and suggest methods for dealing with nonpro-
portionality should it arise, and illustrate these tech-
niques with widely used data on international conflicts.
We show how substantive considerations can prompt
concerns about nonproportional covariates and how ap-
plied researchers can both test and implement remedies
for nonproportionality.

The Issue of Proportionality

Consider a general model of failure time in which the
outcome of interest is the duration until the occurrence
of some event, which we refer to generically as a “failure.”
We may write the conditional probability of failure (i.e.,
the hazard rate) at time ¢ as:

_ Pr(t<T<t+Aqr<i)
h(t)= lim

At—oo At

=f(xB) (@

Generally, we are interested in the case where the hazard
of failure is a function of a set of k covariates X and a co-
efficient vector .2 For illustrative purposes, consider the
widely researched example of cabinet durations, and
suppose we have two types of countries in our data, type
A and type B. Let h,(t) and hy(t) be the hazards of failure
at time ¢ for countries of types A and B, respectively. If
the hazard at time ¢ for a country of type A is propor-

!t is important to note that most widely used parametric models
for duration data, such as the Weibull, also assume that hazards are
proportional. Because of the strong assumptions of parametric
models about the shape of the hazard, parametric models are not
as widely used outside the social sciences as is the Cox model; as a
result, tests and remedies for nonproportionality in the parametric
context are largely nonexistent. However, while we focus on the
Cox model here (and generally prefer the Cox model due to its less
restrictive assumptions), the intuition of our discussion applies to
parametric models as well. For interested readers, a brief discus-
sion of nonproportionality in the context of the Weibull model is
included in Appendix A.

2See Beck (1998), Hosmer and Lemeshow (1999), and Box-
Steffensmeier and Jones (2001) for useful introductions to hazard
rate models.

tional to the hazard for a country of type B, we can ex-
press this relationship as:

h,(t) = Chy(t) (2)

for any positive value of t and where C is a nonnegative
constant. Models that can be characterized by Equation
(2) are known generally as proportional hazards (PH)
models. The value of C is the hazard ratio, i.e., the ratio
of the hazard of failure at any time for a country of type
A relative to a country of type B. If C < 1, the hazard of
failure at ¢ is larger for a country of type A, relative to a
country of type B, such that type A will be expected to
experience a cabinet dissolution sooner than type B.
Conversely, if C > 1, type A’s cabinets will, on average, be
expected to last longer. In either case, the hazard func-
tions for countries of type A and type B will be roughly
parallel over the entire range of failure times (Collett
1994, 44-45; Hosmer and Lemeshow 1999, 205-206).
Proportional hazards models thus “assume that the haz-
ard functions of all individuals differ only by a factor of
proportionality” (Chung, Schmidt, and Witte 1991, 71).
In essence, this means that the effects of covariates are
constant over time; the effect of an independent variable
is to shift the hazard by a factor of proportionality, and
the size of that factor remains the same irrespective of
when it occurs.

There are a number of instances where, for substan-
tive reasons, we might expect that the assumption of pro-
portional effects would not hold. In biomedical research,
a common reason for nonproportional hazards is that
treatment effects decrease over time as subjects develop
resistances to therapies. Thus, the hazard of death or
morbidity for a treatment group, initially lower than that
for the control, increases as the study wears on, causing
the two hazard rates to converge. Alternatively, hazards
may be diverging, as the impact of a treatment grows
more pronounced over time.? Finally, in some instances,
hazards may actually cross. Collett (1994) gives the ex-
ample of choosing between traditional drug therapy and
surgery in cancer treatments: while the initial risk of the
surgery is higher due to complications and other factors,
the long-run prognosis of those undergoing surgery
is better. Thus initial hazards are higher for surgery

31t is important to note that converging or diverging hazards are
not, by themselves, indicative of nonproportional hazards. In fact,
converging hazards are required to meet the assumption of pro-
portionality in models where the hazards are decreasing over
time. Similarly, in models where hazards are increasing, we would
expect proportional hazards to diverge. What is important is the
extent to which that convergence or divergence deviates from pro-
portionality.
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patients, but those hazards decline, while those for che-
motherapy patients increase, over time. The result is that
the estimated hazards for the two treatments “cross” at
some point during the process time.

In political science, we might “ . . expect that the ef-
fect of one or more predictor variables on the hazard rate
increases or decreases over time. There may be a number
of different explanations for such change to occur, in-
cluding learning effects, shifts in life-course position,
maturational changes, and so on” (Teachman and Hay-
ward 1993, 359). In such circumstances, covariate effects
on the hazard of failure are nonproportional: the influ-
ence of an independent variable may be greater or
smaller, or even change signs, depending on the amount
of time that has elapsed for that observation. Consider an
example from recent work on international alliances.
Bennett (1997) asserts that, because they are often more
vague in purpose and make fewer demands on their
members, larger alliances will tend to be more durable
(i.e., have lower hazard rates) than smaller ones, and his
analysis of alliance data bear out this assertion. Theories
of institutionalization, however, also suggest that alli-
ances which survive for long periods of time, regardless
of their size, tend to be more self-perpetuating and there-
fore have lower hazard rates. Thus, the actual effect of al-
liance size may be large early in the life of the alliance,
but decrease over time as the alliance become institution-
alized (Zorn 2000). If this is the case, then the effect of al-
liance size is nonproportional, and estimated hazards for
large and small alliances will converge over time.

Estimating proportional hazards models when haz-
ards are in fact nonproportional results in biased coeffi-
cient estimates and decreased power of significance tests.
In particular, misspecified PH models will overestimate
the impact of variables whose associated hazards are di-
verging, while coefficient estimates for covariates in
which the hazards are converging will be biased towards
zero (Kalbfleisch and Prentice 1980). Schemper (1992)
summarizes the consequences of assuming constant haz-
ard ratios when they are not applicable: “For covariates
whose hazard ratios are nonconstant over time, the
power of corresponding tests decreases because of sub-
optimal weights for combining the information provided
by the risk sets of times where failures occur (Lagakos
and Schoenfeld, 1984). For other covariates with con-
stant hazard ratios, testing power declines as a conse-
quence of an inferior fit of the model” (1992, 455). In ad-
dition, the extent of this bias can be consequential. Gray
(1996), for example, finds that when two treatments have
overlapping or crossing hazards, the power of models
based on the proportional hazards assumption can be re-
duced by as much as 90 percent.

Despite its importance, however, the strong propor-
tionality assumption is rarely tested in political science
applications.? As a result, in most cases we simply do not
know if political science data typically violate this as-
sumption. However, research in other areas has con-
cluded that the assumption is “unrealistic in most appli-
cations” (Vermunt 1997, 101) and “ . . that violations of
the proportionality assumption are the rule, rather than
the exception” (Singer and Willett 1993, 186). We advo-
cate that analysts routinely assess this assumption, using
the relatively simple tests described below, and imple-
ment measures to model nonproportionality if such ef-
fects are suspeded or uncovered. In the following sec-
tions, we outline such tests and techniques for Cox’s
(1972) proportional hazards model.

Nonproportionality and Gox’s
Proportional Hazards Model

The proportional hazards model developed by Cox
(1972) is a popular and flexible model that does not as-
sume a specific probability distribution for the time until
an event occurs.’ The absence of a need to parameterize
time dependency is a significant advantage in most po-
litical science applications, since our theories usually do
not allow us to specify a priori what distribution should
be used, and in many cases the parameterization chosen
can have a large impact on the substantive conclusions
drawn (Larsen and Vaupel 1993). The hazard rate for the
Cox proportional hazards model is:

B(t]X;) = hy(t)e*P 3)

where h,, (£) is the (unspecified) baseline hazard function
and X;are covariates for individual i. Such models are
typically estimated via a quasi- or partial-likelihood pro-
cedure, in which the term for the baseline hazard is treated
as a nuisance parameter and integrated out of the likeli-
hood (Cox 1972; Hosmer and Lemeshow 1999). The Cox
model assumes that the hazard functions of any two indi-
viduals with different values on one or more covariates

*For recent exceptions, see Diermeier and Stevenson (1999) and
Martin (2000).

>The Cox model is the continuous time analogue to a discrete-
time model with a complementary log-log link (Holford 1980;
Laird and Oliver 1981). Issues relating to nonproportionality are
also of concern in such models; however, because discrete-time
models require explicit formulation of duration dependence, the
means for addressing such issues are somewhat different than for
the continuous-time case; we discuss this further below.
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differ only by a factor of proportionality. The baseline
hazard rate varies with time but not across individuals, so
that the ratio of the hazards for individuals 7 and j are in-
dependent of #and are constant for all #:

il _ BX=X5) (4)

As noted above, estimation of Cox’s model when hazards
do not satisfy the proportionality assumption can result
in biased and inefficient estimates of all parameters, not
simply those for the covariate(s) in question. As a result
of this possibility, it is widely recognized outside political
science that the use of procedures to assess the validity of
this assumption are critical.

Tests for nonproportionality in the Cox model fall
into three general classes (see Ng’andu 1997 for a recent
survey). All can be thought of as variations on a more
generalized Cox model that allows hazard ratios to vary

“over time:

h(t) = hy (t)e[XiB+(Xig(f))Y] 5)

In the specification given in Equation (5), the effects of
individual covariates are allowed to vary according to
some function g(*) of time. The intuition behind many
tests for nonproportionality is to test for y = 0. The three
general classes of tests that fall into this framework are:

+ Tests based on changes in parameter values for co-
efficients estimated on a subsample of the data defined
by t, :

+ Tests based on generalized regression residuals, and

« Explicit tests of coefficients for interactions of co-
variates and time.

The last of these approaches also provides a way of explic-
itly modeling time-dependent covariate effects in the Cox
model.® We address each of these approaches in turn.

Nonproportionality Tests Based
on Piecewise Regressions

The nature of the time-dependence specified in Equation
(5) implies that covariates will have differential impacts
on the hazard rate depending on the time in the event
history at which they occur. The simplest possibility is to
treat g(*) as a step function at some point in the process T,
taking on a value of 0 for all points in time prior to that
and 1 after:

SImportantly, we advocate that the latter approach not be used as a
test, but rather as a means of correcting for nonproportionality, for
reasons discussed below.

gt)=0vt<n,
=1Vt>n1.

Under this view, a natural test for nonproportionality is
to estimate separate Cox regressions for different values
of g(1), that is, for observations whose survival times fall
above and below some predetermined value, and deter-
mine if the estimated covariate effects are consistent
across the two models.

The piecewise regression approach provides a simple
means of making an initial assessment of the issue of
proportionality (Schemper 1992; Collett 1994). While
better tests are now available for the Cox model (i.e., tests
based on the generalized residuals, which we discuss in
the following section), for researchers choosing to em-
ploy a Weibull or other parametric model that makes the
proportional hazards assumption, this test is the best one
can do. The specification above represents this test in its
simplest form; the data may be divided into as few or
many separate time periods as are reasonable and/or are
suggested by one’s theory. In some cases, aspects of the
data will suggest likely values for the break points; other-
wise, medians or quartiles may be used. By examining
the sensitivity of parameter estimates to estimation over
different subsets of the data, one can implicitly test the
hypothesis that each covariate’s impact remains relatively
stable over the period under study.”

Residual-Based Tests for Proportional Hazards

The second set of approaches for detecting violations of
the proportional hazards assumption are residual-based
approaches; these include both graphical and statistical
tests for nonproportionality.? In standard least-squares

7An alternative means of dealing with nonproportionality is to
stratify the data by the covariate of interest. Under stratification,
the impact of the remaining independent variables on the condi-
tional hazards is assumed to be constant across strata, but separate
baseline hazards are estimated for the j different groups defined by
the covariate in question:

h(t) = hy (£)e P

One benefit of stratification is that it allows straightforward com-
parisons of model fit and parameter sensitivity to the stratification
technique. A major drawback of the stratification approach, how-
ever, is that stratification on a variable of interest prevents estima-
tion of the impact of that variable on the hazard rate. Because the
Cox model factors out the baseline hazard, the separate baselines
for different covariate values are not reported. Thus, stratified esti-
mates tell us nothing about the effect of the stratifying variable on
the hazard of failure.

8Another graphical method for assessing nonproportionality is the
use of log-log plots. These plots have become one of the most
widely used methods, largely because they are relatively simple to
generate and interpret (e.g., using Stata’s -stphplot- command)

-(Chen and Wang 1991; Deshpande and Sengupta 1995; Grambsch
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regression, a residual is simply the difference between
the observed value of the outcome variable and its pre-
dicted value. Residuals are not as obvious in the context
of duration models, since the value of the outcome vari-
able may be censored and the fitted model may not pro-
vide an estimate of the systematic component of the
model due to the use of the partial likelihood (Hosmer
and Lemeshow 1999, 197—198). '

The key intuition for comprehending residuals in
the context of duration models is to understand the Cox
model as a special case of a more general “counting pro-
cess.” This conceptualization was first suggested by
Andersen and Gill (1982); while analytically difficult, it
provides a very general, unified way of conceptualizing
models for duration data, and has been widely adopted
in the biomedical literature (see, generally, Andersen et
al. 1993; Fleming and Harrington 1991). Under this
view, “each subject in the data is treated as one observa-
tion in a (very slow) Poisson process. A censored subject
is thought of not as incomplete data, but as one whose
event count is still zero” (Guide to Statistics 1999, 277).
Under this approach, we can define the residual, M (@),
as simply the difference between the “observed” event
indicator (i.e., the censoring indicator §,(¢)) and the “ex-
pected” number of events (i.e., the integrated hazard es-

timate A,-(t) = Jhi (w)du):
0
M;(1)=8,(t)- A, (1) 6)

More specifically, Fleming and Harrington (1991,
163-197) derive residuals for the Cox proportional haz-
ards model by considering that model as a special case of
this more general multiplicative intensity counting
model. They show that the estimated martingale residual
M ;(t) for the nontime-varying Cox model is:

M(1)=8,0) - | exp(xi[%)dAo(t) (7)
0

where §,(1) is a censoring indicator and AO (¢) is the esti-
mate of the integrated baseline hazard at t. These re-
siduals have several properties reminiscent of ordinary
least-squares residuals: for example, ¥M; = 0, and
Cov(M;;M,) =0 asymptotically.® Additionally, Therneau,

et. al. 1995). However, this approach has come under substantial
criticism for its failure to consistently and correctly diagnose in-
stances of nonproportionality, particularly in the presence of addi-
tional covariates, and for its inability to assess nonproportional ef-
fects in continuous covariates (e.g., Chastang 1983; Schemper
1992). Accordingly, we do not recommend this method for detect-
ing nonproportionality and do not consider the approach further
here.

°One potential drawback of the martingale residuals defined in
this fashion is that they are badly skewed. In the context of the Cox

Grambsch, and Fleming (1990, 151) note that covariate-
specific score residuals can be derived by using the mar-
tingale residuals and considering the derivative of the
Cox partial likelihood with respect to each coefficient :

Ly (t) = I[in(t)_)_(k (f)]dMi(f) (8)
0

where X, (t) is the weighted mean of covariate X, over
the risk set at time #, with weights corresponding to
eXt®B In contrast to martingale residuals, score residu-
als are covariate specific, and sum to zero across observa-
tions for each covariate. Score residuals are closely related
to the partial residuals introduced by Schoenfeld (1982),
which have been widely used to test the proportional
hazards assumption. Specifically, the Schoenfeld residu-
als for each covariate k are simply the cross-observation
sums of the efficient score residuals:

N
ske(8) = Lig(#) )

i=1

This summation yields a single value for each covariate at
each time point, which can then be used to diagnose vio-
lations of the critical proportional hazards assumption.
Fleming and Harrington (1991) illustrate how mar-
tingale, deviance, score, and Schoenfeld residuals may be
used for assessing model adequacy, including testing the
assumption of proportional hazards. More recent work
by various authors (e.g., Grambsch and Therneau 1994;
Grambsch, Therneau, and Fleming 1995) has extended
these techniques considerably. Schoenfeld residuals have
emerged as particularly important in testing the propor-
tional hazards assumption, in two ways. First, if the haz-
ards are proportional, the Schoenfeld residuals should
be a random walk over the range of survival times; that
is, there should be no relationship between an observa-
tion’s residual for that covariate and the length of its
survival time. Conversely, if proportional hazards does
not hold, the fitted model will underestimate the hazard
during those periods where the hazards are diverging

model, martingale residuals are lower unbounded but bounded
from above by one. Therneau, Grambsch, and Fleming (1990) sug-
gest a normalizing transformation of the residuals, similar to the
deviance residuals common to generalized linear models, which
leads to the residuals being symmetrically distributed around zero
when the correct model is estimated (e.g., McCullagh and Nelder
1989). They suggest using deviance residuals, defined as:

d;= sign[_z(Mi +8iln(8i - M'))]

This formulation inflates the martingale residuals close to one,
while reducing the magnitude of very large negative values.
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Ficure 1 Schoenfeld Residuals and Proportional Hazards
1 —]
.75 4 Residual
Estimated h(t[X = 1)
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Note: Figure plots actual (non-proportional, smooth lines) and estimated (proportional, circled
line) hazards for a binary covariate with nonproportional effects. Residuals may be interpreted
as differences between observed and expected numbers of events; see text for details.

and overestimate it when they are converging. So if, for
example, the hazards for a particular covariate are con-
verging over time, the model will underestimate the im-
pact of that variable for small ¢, and overestimate it for
large ¢, a fact that will be reflected in the residuals for
that covariate. The intuition of this is illustrated in Fig-
ure 1, which plots the actual (nonproportional) and es-
timated (proportional) hazards for a binary covariate
which has a nonproportional effect on the hazard rate.
Figure 1 illustrates how plots of the values of the residu-
als against some function of time can serve as a simple
graphical test for proportionality in covariate effects.
Second, Schoenfeld residuals form the basis for statis-
tical tests of the nonproportionality assumption. The in-
tuition discussed above has led to Therneau, Grambsch,
and Fleming’s (1990) residual-based test, which uses the
maximum of the absolute value of the summed (over
time) Schoenfeld residuals as a global test for nonpro-
portionality in the model. Relatedly, one can calculate the
correlation p between the Schoenfeld residuals for a par-
ticular covariate and the rank of the survival time (Harrell
1986). Grambsch and Therneau (1994) modify this test by
using the scaled residuals and also detail a global test for
nonproportionality based on the aggregated (across co-
variates) covariance between the unscaled Schoenfeld re-

siduals and survival time. In every case, residual-based
evaluations of proportional hazards have been facilitated
by the development of software which makes the genera-
tion and analysis of these residuals routine (e.g., in Stata
7.0 and S-Plus 6.0).1°

Estimating Cox Models In the Presence
of Nonproportional Hazards

In the event that covariate effects are nonproportional,
there are two well-known and accepted estimation ap-
proaches. First, as discussed above, separate Cox models
may be used for two or more distinct time intervals.
While this approach has the advantage of being both con-
ceptually and computationally simple, it also suffers from
several drawbacks. It forces researchers to divide up their
time scale, in many cases in an arbitrary manner, and the
decision about where to divide the time axis can have a
significant influence on the model’s results. Moreover, to

101, 0g files and appropriate commands for estimating residual-
based tests for nonproportionality using Stata and S-Plus can be
found in an appendix available at the AJPS website or at http://
www.emory.edu/POLS/zorn/Data/B-S&Z2001.html.
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the extent that the model contains covariates that are pro-
portional in their effects, such an approach suffers from
inefficiency, since separate analyses force the researcher to
estimate two or more parameters where only one would
be adequate. Thus, while estimating piecewise models is
one test (and, in the case of parametric models, the only
test) for assessing proportional hazards, it is not the opti-
mal method for correcting such a problem.

A second estimation approach, and one which is
widely recommended, involves estimating a standard Cox
model with the addition of an interaction effect between
the offending covariate(s) and some function (often the
natural logarithm) of time (e.g., Kalbfleisch and Prentice
1980; Collett 1994). Thus, to test if covariate X has a non-
proportional effect, one would include in the model an
additional variable X; X In(Time).!! This amounts to an
explicit operationalization of Equation (5) and is a very
general way of addressing nonproportionality; in particu-
lar, in the case of a binary covariate, this test encompasses
all possible alternatives to proportional hazards (Guide to
Statistics 1999, 309). Significance tests on the interaction
term can be conducted in the standard way and constitute
a direct test for the proportionality of the covariate’s ef-
fect; moreover, in the presence of nonproportionality, in-
cluding such an interaction results in a better-specified
model and greater accuracy in assessing covariate effects.

In summary, theoretically informed use of time-by-
covariate interactions provides the best means of esti-
mating models in which the covariate effects are not
proportional. As a general rule, the recommended re-
sidual-based tests should always be conducted, as it is
widely accepted that they are the best approach for de-
tecting nonproportionality. If such tests indicate non-
proportionality is present, corrections via interactions of
time and the offending covariates can then be imple-
mented for those variables that are shown to be substan-
tially nonproportional in their effects. While some have
advocated the use of In(Time) interactions for testing
nonproportional hazards as well as correcting for it, this
is not recommended: correlation among the covariates,
including that which is induced by the addition of all
In(Time) interactions, can affect conclusions about the
presence or absence of proportional hazards (e.g.,
Grambsch and Therneau 1994).

HOther forms of the interaction have been suggested, such as X; x
Time or X; X (Time)?, each of which reflects the possible diversity
in the shape of the nonproportionality (and constitutes a different
test). However, most applied treatments favor In(Time) interac-
tions. Moreover, simulations by Quantin et al. (1996) and Ng’andu
(1997) show that In( Time) “has power nearly as high as or higher
than all other commonly used tests to detect reasonable alterna-
tives to proportional hazards” (Hosmer and Lemeshow 1999, 207).

Proportional Hazards and the Study
of International Disputes

We use data on international disputes to demonstrate the
importance of the proportional hazards assumption and
to illustrate procedures and techniques for detecting and
addressing violations of proportionality. For comparabil-
ity with previous work, we analyze widely used data on
827 “politically relevant” dyads during the period from
1950 to 1985 (e.g., Oneal and Russett 1997; Beck, Katz,
and Tucker 1998; Reed 2000).'2 Each dyad is observed
once for each year it is in the data, for a total of 20,990
observations (an average of 25.4 years per dyad). The
variable of interest is the duration until the onset of a
militarized interstate dispute between the two nations
who make up the dyad. Following previous work, we
model the hazard of a dispute as a function of six factors:
the level of democracy in the dyad, economic growth, the
presence of an alliance between the two nations, whether
the two nations are geographically contiguous, the ratio
of military capabilities of the two nations, and the level of
intradyadic trade (measured as a proportion of GDP).!?
In addition, in light of Beck, Katz, and Tucker’s (1998)
analyses, we estimate models both with and without a
counter for the number of previous conflicts during the
1950-1985 period.'* Previous research suggests that all
of these covariates save those for contiguity and previous
disputes will exhibit a negative impact on the hazard of
an interstate dispute.

As a theoretical matter, we have reasons to expect
nonproportional effects in the international disputes data.

12These data are at the core of the “liberal peace” research agenda,
which has become one of the most important current research
programs in political science and is at the heart of the debates over
the relationship between trade and conflict (Russett 1990, 1993;
Maoz and Russett 1992, 1993; Ray 1997; Gartzke 1998; Werner
2000b). Our work with these important data meshes with a cur-
rent concern in the field of international relations over the chang-
ing influence of explanatory variables on conflict over time (e.g.,
Box-Steffensmeier, Reiter, and Zorn 2000; Mansfield and Pollins
2000). Indeed, as a substantive matter, our work here helps to
make sense of the myriad disparate findings on the relationship
between trade and conflict (e.g., Barbieri 1996; Oneal et al. 1996;
Oneal and Russett 1997, 1999; Beck, Katz, and Tucker 1998; Beck
1999).

13A11 variables are operationalized as in Beck, Katz, and Tucker
(1998); see Appendix B for details and summary statistics.

4Qur Previous Disputes variable counts the number of disputa-
tious events experienced by the dyad; consistent with Beck, Katz,
and Tucker’s analysis (1998, Table 2) we also omit dyad-years of
continuing conflicts. This approach is a simple way of accounting
for multiple conflicts within the same dyad; for a fuller treatment
of the issue of repeated events, see Box-Steffensmeier and Zorn
(2001).
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For example, the pacifying effects of an alliance, strong in
the initial years after a conflict, may wane as the peace
wears on. Alliances that occur shortly after a dispute re-
flect a particularly high degree of commitment to peace
between those nations; those which persist, or are formed
later, may lack the same level of commitment. A similar
dynamic, albeit in the opposite direction, may operate vis-
a-vis the effects of previous disputes. Social-psychological
theories of learning in international relations suggest that
the influence of previous events on behavior may wane
over time (e.g., Reiter 1996). Accordingly, we might expect
that the increased likelihood of conflict associated with
previous disputes may decline over time, as nations “for-
get their differences” and settle into a lasting peace. In
both instances, theory suggests that the effect of these in-
fluences will be nonproportional over time.

We begin by examining piecewise Cox models!® in
which we divide the time until disputes into those
shorter than fourteen years (the median duration in the
data) and those equal to or greater than that value; these
results, along with the pooled estimates for all observa-
tions, are presented in Table 1. Columns one and four es-
sentially replicate the results of Oneal and Russett (1997)
and Beck, Katz, and Tucker (1998), respectively, using all
observations: democratic dyads exhibit significantly
lower hazards of conflict, as do those with high levels of
growth and large disparities in military capabilities. The
reverse is true for contiguous states, which are more
likely to engage in conflict, while the estimated effects for
trade, though negative, fail to attain anything approach-
ing statistical significance. And as in other analyses, the
pacifying effect of alliances decreases dramatically once

" previous events are included in the model (Beck, Katz,
and Tucker 1998, Table 3).

More interesting, however, are the findings for the
piecewise models. While some estimates (e.g., those for
democracy and contiguity) remain relatively consistent
across the two piecewise models, others exhibit signifi-
cant variation. The effect of economic growth, for ex-
ample, is significantly larger for dyads that have experi-
enced extended periods of peace than for those with
shorter durations. Similarly, the effects of differences in
capabilities also vary across the two piecewise models,

I5While we do not recommend piecewise estimation of Cox mod-

els for reasons previously discussed, we present these results to il-

lustrate how one can test for nonproportionality in a parametric
(e.g., Weibull) model. To the extent that the residual based tests
shown below are not available for the parametric models, piece-
wise regressions provide the most direct way of assessing non-
proportionality in these contexts. Here, the piecewise models pro-
vide additional complementary evidence of nonproportionality
for the Cox model as well.

though this difference effectively disappears when previ-
ous disputes are included. The results for previous dis-
putes themselves also vary across the two models: as one
would expect, the influence of previous conflicts on the
instant probability of a dispute declines the longer two
nations have been at peace. Most striking are the changes
in the effects for international alliances: while both point
estimates are negative, the effect of alliances in dyads
with longer durations is both tiny and imprecisely esti-
mated. Once previous disputes are controlled for, alli-
ances actually exhibit a small, positive influence on the
probability of conflict in dyads that have been at peace
for more than the median duration. For both models,
likelihood-ratio tests allow us to confidently reject the
hypothesis that the coefficients are constant across the
two estimates ()%(6) = 18.82 and 152.44, p = .004 and
<.001 for the models omitting and including previous
disputes, respectively).

This initial look at the issue of nonproportionality,
then, suggests that several covariates may not have a pro-
portional influence on the probability of an international
dispute. In particular, the effects of economic growth, al-
liances, and previous disputes all appear to vary depend-
ing on the duration of the peace. These findings are rein-
forced by an examination of the residual-based methods
of Grambsch and Therneau (1994). We begin by plotting
the rescaled Schoenfeld residuals against survival times;
as discussed above, a trend in this plot indicates that the
Cox model is systematically over- or underpredicting the
actual hazards at particular time points, and provides
strong evidence of nonproportionality. We supplement
this graphical approach with statistical tests for nonpro-
portionality based on these residuals; we use the Harrell
(1986) correlation test for individual variables, as well as
calculating Grambsch and Therneau’s (1994) global test
for nonproportionality.

The Grambsch and Therneau plots for the model that
omits previous disputes are presented in Figure 2. The
vertical axis indicates the values of the residuals, while the
horizontal axis plots In( Time). Plots also include a refer-
ence line at zero (the mean of the residual values) as well

. as alowess line (span = 0.8) through the residuals to facili-

tate observation of trends in the residuals. If the effects of
a covariate are proportional, the two lines ought to be very
close to one another, as the average value of the residuals
at any point in time should be zero. This pattern is gener-
ally true for the trade variable, and only slightly less so for
the democracy measure. The positive slope of the lines for
the alliance and capability ratio variables, by contrast, is
consistent with our earlier results: both suggest that a
model which assumes a proportional effect for those
covariates will tend to underpredict the hazard of a
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TasLe 1 Cox and Piecewise Cox Models of International Disputes, 1950-1985
No Previous Disputes With Previous Disputes
Variable All Observations T<14 T>14 All Observations T<14 T214
Democracy -0.439** -0.485*" -0.333" -0.333* -0.247* -0.245
(0.123) (0.142) (0.176) (0.108) (0.132) (0.185)
Economic Growth -3.227* -1.427 -6.187* -2.702* -0.778 -5.301**
(1.318) (1.718) (1.763) (1.331) (1.945) (1.756)
Alliance -0.414* -0.642* -0.035 0.110 0.036 0.465*
(0.170) (0.190) (0.243) (0.114) (0.141) (0.216)
Contiguity 1.213* 1.061* 1.486™ 0.449* 0.472* 0.583**
(0.178) (0.189) (0.267) (0.124) (0.212) (0.228)
Capability Ratio -0.214* -0.262** -0.137 -0.162** -0.099** -0.116
(0.082) (0.095) (0.097) (0.059) (0.041) (0.107)
Trade -13.162 -13.304 -17.600 11.487 -3.677 5.483
(13.827) (30.906) (13.353) (6.670) (19.541) (6.079)
Previous Disputes — — — 1.062** 1.667** 0.826*
(0.078) (0.099) (0.066)
InL -2501.88 -1698.52 -793.95 -2094.03 -1367.16 -650.65
N 20,448 10,366 10,082 20,448 10,366 10,082

Note: Cell entries are coefficient estimates; robust standard errors are in parentheses. One asterisk indicates p < .05, two indicate p < .01 (one-tailed).

See text for details.

dispute early (when those variables’ negative effects are
greatest) and overpredict that hazard later in the duration
of the peace. The reverse is true for the economic growth
variable; the observed negative slope indicates a tendency
to overestimate its effects early in the duration and under-
estimate them in later periods. In all three instances, these
patterns are consistent with nonproportional effects for
these variables.

Evidence of nonproportionality is even clearer in the
residual plots from the model that includes previous dis-
putes as a covariate. Figure 3 again plots scaled Schoenfeld
residuals against In(Time) for four representative inde-
pendent variables. The effect of economic growth is once
again only slightly nonproportional, while that for levels
of trade is again very nearly proportional. By contrast, the
nonproportional effect of alliances is even greater once
previous disputes are taken into account, as evidenced by
the clear positive slope to the scaled residual plot. And the
effect of previous disputes themselves are also strongly
nonproportional: all scaled residuals through T = 5 take
on positive values, and the overall slope of the line is
clearly negative, indicating that the effect of previous dis-
putes “wears off” after many years of peace.

The formal statistical tests based on Schoenfeld re-
siduals are straightforward and reinforce the findings of
the graphical analyses. Table 2 presents the results of both

covariate-specific and global Grambsch and Therneau
(1994) tests for nonproportionality described above, for
models with and without Previous Disputes. The columns
designated p report the estimated correlation between the
scaled residuals and In(Time), while the %% and p-values
indicate the confidence with which we can reject the null
hypothesis that the hazard ratios for different values of
that covariate are constant over time. For the model with-
out previous events, the clearest evidence of nonpropor-
tionality is found in the measures for alliances and capa-
bility differences, with smaller effects for democracy,
growth, and trade; all these results are consistent with ear-
lier findings for this model. When previous disputes are
accounted for, both overall levels of nonproportionality
and many variable-specific values also increase; most no-
tably, that for alliances and economic growth are larger in
the latter model. The largest nonproportional effects are
again observed for the previous disputes variable itself,
and overall levels of nonproportionality are significantly
higher for the latter model as well; this latter finding is
also consistent with the likelihood-ratio tests from the
piecewise models.

Taken as a whole, the evidence from the various tests
for nonproportionality is clear. In a model of interna-
tional conflict that fails to account for the effects of previ-
ous disputes, there are strong indications that the effects
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Ficure 2 Plots of Scaled Schoenfeld Residuals against /In(Time): Model Without Previous Disputes
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Ficure 3 Plots of Scaled Schoenfeld Residuals against In(Time), Model With Previous Disputes
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TasLe 2 Results of Grambsch and Therneau Nonproportionality Tests, International Dispute Models

Model Without Previous Disputes Model With Previous Disputes
Variable p Ve p-value p X2 p-value
Democracy 0.122 14.85 <.001 -0.119 7.32 .007
Economic Growth -0.118 7.78 .005 -0.251 45.02 <.001
Alliance 0.146 31.88 <.001 0.439 209.49 <.001
Contiguity 0.069 4.67 .03 -0.251 39.23 <.001
Capability Ratio 0.111 25.47 <.001 0.051 2.40 A21
Trade -0.097 9.08 .003 0.031 0.21 .650
Previous Disputes — — — -0.529 713.78 <.001
Global Test — 61.85 <.001 — 761.76 <.001

Note: Results are based on models presented in Table 1, and are for log-time specifications; see text for details.
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of international alliances and capability differences on
preventing disputes wane over time, while that for eco-
nomic growth grows stronger. These differences persist,
and are magnified, in a model that also controls for the
incidence of past disputes between the countries in ques-
tion. Moreover, the pacific effect of such disputes them-
selves also declines dramatically over time, a finding con-
sistent with the theory that the disputatious effect of
recent conflicts “wears off” the longer the nations in ques-
tion remain at peace. In each of these cases, a model that
assumes (and estimates) a proportional effect for these
covariates provides at best an incomplete, and at worst a
misleading, picture of the true nature of the dependence.

To address this nonproportionality, and to better as-
sess the effects of the variables just discussed, we estimate
two models of international disputes in which we inter-
act each of the potentially nonproportional covariates
with In( Time).!® Doing so allows each covariate’s effect
on the hazard of conflict to vary monotonically with the
duration of the peace and will thus provide a more com-
plete and accurate picture of the true influence of these
variables on the hazard of a dispute.

The estimates of the interactive models, both includ-
ing and excluding Previous Disputes, are presented in
Table 3. Because of the variables’ interactions with log-
duration, estimates of the direct effects have a natural in-
terpretation as the effect of that covariate on the hazard
of a conflict in the first year following the end of a dis-
pute (that is, when T = 1). Consider first the model omit-
ting previous disputes. Consistent with earlier results
presented in Table 1, we see that the pacifying effects of
an alliance, strong in the initial years after a conflict,
wane as the peace wears on, such that after twenty-seven
years of peace its influence is effectively zero. We suspect
that this change is due to the fact that alliances which oc-
cur shortly after a dispute reflect a particularly high de-
gree of commitment to peace between those nations,
while those which persist, or are formed later, may lack
the same level of commitment.!” In addition, as time
passes following the formation of an alliance, foreign
policy preferences may diverge. With such changes, the
chances of conflict between allied states (who by defini-
tion have some common interests) will also be likely to

16Note that the In(Time) interactions used with the Cox model
are easily adaptable to a discrete time model as well (e.g., Beck,
Katz, and Tucker 1998). That approach simply involves including
In(Time) and the appropriate time-by-covariate interactions
among such a model’s explanatory variables; estimation and in-
terpretation may then proceed normally.

17Such a theory squares well with recent research on wars as part of
a broader bargaining game between states (e.g., Wagner 2000;
Werner 1998, 2000a).

increase over time. A similar dynamic holds for differ-
ences in military capabilities: the initially large, negative
impact of capability differences on the hazard of conflict
declines over time, albeit at a less dramatic rate than that
for alliances. Conversely, the pacifying effects of eco-
nomic growth become stronger as the peace wears on;
that variable’s influence, initially negligible, grows dra-
matically more significant over time.

The results for the model that includes previous dis-
putes are broadly similar, albeit with a few important dif-
ferences. The effects for disparities in capabilities are
more modest in the second analysis, as are the increases,
with time, in the effect of economic growth on reducing
conflict. Chief among the cross-model differences is the
influence of alliances, which now exhibit no significant
negative effect on the probability of a conflict, irrespec-
tive of when the alliance takes place. Moreover, alliances’
effects on conflict decline to zero after only three years,
and after that becomes steadily more positive, suggesting
that alliances may actually act to increase the odds of a
conflict after many years of peace.'®

A second important difference is in the effect of pre-
vious disputes. Beck, Katz, and Tucker’s (1998) analysis
finds a strong positive influence of prior disputes: within
a dyad, conflict tends to beget itself, with greater num-
bers of previous disputes being associated with higher
probabilities of conflict. Our result confirms and extends
this finding; importantly, however, our work also shows
that the influence of previous disputes declines over
time. The interactive model allows us to estimate the ex-
tent to which such disputes’ influence on future conflict
wanes over time. Figure 4 plots the odds ratios (i.e., the
exponentiated coefficient estimates) for the previous dis-
putes variable, as a function of time.!® The large, positive
odds ratio is consistent with the sizeable direct effect es-
timate: in the early years following a conflict, the effect of
previous disputes is to increase the hazard of another
conflict by as much as a factor of forty. As time pro-
gresses, however, that effect decreases rapidly, such that
by the tenth year its effect is to increase the odds of a fur-
ther dispute by 350 percent, and in the twentieth year of
peace, by only 131 percent. And at the maximum value of
observed duration (T = 35), the estimated effect of a pre-

18While we are hesitant to place any great substantive stock in this
result, we do note that it is consistent with the notion that alli-
ances, like trade, provide “points of contact” between states and
thus may be indicative of greater interaction (and thus, greater po-
tential for dispute) than between nonallied states.

¥ The odds ratio indicates the percentage change in the hazard as-
sociated with a one-unit increase in the covariate in question; thus,
an odds ratio of 2.0 corresponds to a 100 percent increase in the
hazard (Box-Steffensmeier and Zorn 2001).
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TasLe 3 Cox Models with Log-Time Interactions for Nonproportionality

Variable No Previous Disphtes With Previous Disputes
Democracy -0.692** -0.266
- (0.208) (0.154)
Economic Growth 0.688 -0.293
(2.452) (1.528)
Alliance -1.211* -0.287
(0.294) (0.198)
Contiguity 0.859* 0.447*
(0.290) (0.193)
Capability Ratio -0.432* -0.047
(0.186) (0.028)
Trade 20.643 -2.085
(21.470) (5.990)
Previous Disputes — 3.731*
(0.174)
Democracy x In(Time) 0.123 0.03
(0.084) (0.071)
Economic Growth x In(Time) -2.040* -1.407
(1.030) (0.762)
Alliance x In(Time) 0.368** 0.282**
(0.118) (0.109)
Contiguity x In(Time) 0.167 -0.005
(0.126) (0.089)
Capability Ratio x In(Time) 0.103*
(0.083) —
Trade x In(Time) -14.894
(9.419) —
Previous Disputes x In(Time) — -0.967**
(0.062)
InL -2489.97 -1923.81

Note: Cell entries are estimated coefficients; robust standard errors are in parentheses. N = 20,448,
One asterisk indicates p < .05, two indicate p < .01 (one-tailed). See text for details.

vious dispute is to increase the hazard of a conflict by a
mere 35 percent. By contrast, the model that assumes a
proportional effect for previous disputes (Table 1, col-
umn four) would suggest that the presence of a previous
dispute raises the hazard of conflict by a uniform 189
percent, irrespective of how long ago that dispute oc-
curred. This effect is indicated by the horizontal line in
Figure 4; note that, for most of the durations in question,
this estimate is outside of the 95 percent confidence in-
terval for the actual, time-dependent effect. Figure 4 thus
graphically illustrates how a model that assumes propor-
tional hazards yields significantly misleading inferences
about the influence of nonproportional covariates.

Conclusions

Duration models are fast becoming one of the most
widely-used quantitative techniques in political science.
As models of durations become increasingly common in
our discipline, it is important that their properties and
underlying assumptions be properly understood and ap-
preciated. One such property is that of proportionality in
covariate effects, and the validity of one’s estimates de-
pends strongly on meeting this assumption. Violations of
this property have the potential for widespread and seri-
ous consequences for political scientists, for two reasons.
First, as described and illustrated above, such violations
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Ficure 4 Odds Ratios by Duration: Previous Disputes Variable
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can have dramatic and detrimental effects on parameter
estimates, and therefore on the conclusions we draw
about the processes under study. Second, proportionality
in covariate effects is quite likely to be the exception rather
than the rule. Thus, we are faced with a problem that is
likely to be both serious and widespread in our research.
Mindful of this possibility, we have presented, dis-
cussed, and implemented a range of currently available
tests for proportionality in duration models. We concen-
trated on the Cox model and presented both graphical
and statistical approaches for detecting and ameliorating
deviations from proportionality. Using data on interna-
tional conflict, we demonstrated the importance of the
proportionality property, showing how incorrect as-
sumptions about proportionality can have a large impact
on estimates of covariate effects and lead to misleading
inferences about the process being studied. In general, we
recommend the use of residual-based tests for determin-
ing whether proportional covariate effects are, in fact, a
reasonably accurate description of one’s data. Such tests,
and the residuals upon which they are based, are increas-
ingly easy to obtain in all commonly-used software pack-
ages for analyzing duration data. In addition, we show
that relaxing the proportional hazards assumption allows
one both to correct for nonproportionality in covariate
effects and to evaluate the substantively interesting phe-

nomena which give rise to nonproportionality in the first
place. In summary, we recommend that applied research-
ers take the requirement of proportionality in these
models seriously, and that diagnostic tests and remedial
analyses we outline become standard practice for schol-

- ars analyzing political science duration data.

Manuscript submitted January 27, 2000.
Final manuscript received February 14, 2001.

Appendix A
Proportionality in the Weibull Model

The Weibull model, like nearly all other parametric models,
is a proportional hazards model, and is the most commonly
used duration model in political science (e.g., Bennett 1997;
Werner 1998).%° The Weibull model may be written as:

2 The popularity of the Weibull over the Cox model in political
science is somewhat surprising, given that the Cox model imposes
many fewer restrictions than the Weibull. While both are models
of proportional hazards, the Weibull model requires additional
parametric assumptions about the hazard rate as well (Box-
Steffensmeier and Jones 2001).
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h(t)=Ap(At)P (A1)

where we typically specify A; = exp(X8) and p is often re-
ferred to as the “shape” parameter. A shape parameter equal
to one corresponds to constant hazards, while p < 1 indi-
cates that hazards are decreasing and p > 1 suggests that
hazards are rising over time.?!

The Weibull model is a proportional hazards model be-
cause the ratio of the hazards for individuals i and j depends
only on the covariates and p, and not on time:

p
m(x_] *2)

O

In the context of the Weibull model, in addition to covariate
effects, the assumption of proportional hazards extends to
the restriction that the shape parameter p is equal over time
and across different values of the independent variables.
That is, “in the Weibull model, the assumption of propor-
tional hazards across a number of groups, g, say, corre-
sponds to the assumption that the shape parameter in the
baseline hazard function is the same in each group” (Collett

1994, 195; see also Zorn 2000). As in the case of the Cox

model, if unaccounted for nonproportionality exists in the
Weibull model, estimates of the influences of covariates are
likely to be distorted.

The literature on testing the proportional hazards as-
sumption is much less well developed for the Weibull than
for the Cox model. In particular, many of the recently-
devised residual-based tests for nonproportionality have yet

to be applied in a parametric context. However, as pointed
out earlier, one test available for testing proportionality in
parametric models is to fit separate Weibull models to each
of the g groups (Collett 1994). The values of the log-likeli-
hoods InL, for each group can then be summed, and com-
pared to that for the model combining all groups of data
(and thus assuming common covariate effects, as well as a
common shape parameter p). Twice the difference between
these statistics follows a chi-squared distribution with
(g—1) X k degrees of freedom; failure to reject the null hy-
pothesis can be taken as evidence that the assumption of
proportional hazards is justified.

As a brief illustration, we estimated Weibull models of
international conflicts, both with and without the Previous
Events variable, using the data examined herein and di-
viding the data at T > 14.22 For the model omitting previ-
ous disputes, the likelihood-ratio statistic is 42.58 (that is,
—2[-1029.64 — (-758.74 — 249.61)]); for the model which
includes Previous Disputes, the corresponding statistic is —
2[-709.56 — (-517.33 — 116.52)] = 151.42. In both cases, we
can clearly reject the joint null hypothesis that the co-
variates’ effects on the hazards and the shape parameters
are constant over time. As in the case of the Cox model,
subsequent to such a finding, one can use time-by-
covariate interactions to investigate the nature and extent
of the nonproportionality. As noted above, the potential for
collinearity among such interactive terms is high; overuse
of such terms therefore runs the risk of decreasing the pre-

- cision of one’s estimates, and should be avoided.

Appendix B
Coding and Summary Statistics for International Dispute Data

Variable Mean Standard Deviation Minimum Maximum
Dependent Variable

Duration 14,185 8.805 1 35
Independent Variables

Democracy -0.344 0.695 -1 1
Economic Growth 0.008 0.034 -0.265 0.165
Alliance 0.356 0.479 0 : 1
Geographical Contiguity 0.310 0.462 0 1
Capability Ratio 1.668 4.479 0.01 78.930
Intradyadic Trade 0.002 0.008 0 0.177
Previous Disputes 0.273 0.718 0 8

Note: N = 20,448 (827 dyads averaging 24.7 years per dyad and 405 total disputes). Data are taken from Oneal and Russett (1997) and Beck, Katz,

and Tucker (1998).

2Many authors (e.g., Lancaster 1990) discuss the Weibull shape

parameter in terms of ¢, where 6 = 1/p.

22For reasons of space, the results of these estimates are not pre-
sented here; they can be obtained from the authors upon request.
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Variable Specifications

Duration Duration of peace, in years.

Democracy Polity III democracy score of the less-
democratic dyad member, rescaled to
range between -1 and 1.

Economic Growth ~ Annual GDP growth for the lower-
growth dyad member, divided by 100.

Alliance Coded 1 if the members of the dyad
are allied, 0 otherwise.

Contiguity Coded 1 if the dyad members are con-
tiguous states, 0 otherwise.

Capability Ratio  The natural logarithm of the ratio of
the two states’ military capabilities, as
measured by the Correlates of War
data.

Trade The ratio of bilateral trade to GDP, in
constant U.S. dollars.

Previous Disputes A running counter of the number of

previous disputes experienced by the
dyad during the 1950-1985 period.
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