Clarify Outline

\qquad

- Installation
- The Basic Idea of Simulation
(and why it makes sense for substantive interpretation)
- Components of Clarify
- estsimp, setx, simqi
- A Real, Live Example
- Logit Model
- Continuous IVs
- Binary IVs
- Concluding Points
- Models Supported
- How to 'Clarify' other Models

Installation

The Basic Idea of Simulation

So, you estimate a model... and you want to say something substantive with quantities of interest:

Predicted or Expected Values of DV $=X_{\mu} \hat{\beta}$
First Differences $=X_{+\sigma} \hat{\beta}-X_{\mu} \hat{\beta}$

The problem is that our $\hat{\beta} s$ are uncertain!
The solution is we know how uncertain.
\qquad

\qquad
$\left(\hat{\sigma}_{1}\right)$

The Basic Idea of Simulation: Parameters

In order to capture the uncertainty, we draw simulated $\hat{\beta s}$ from the multivariate* normal distribution.

The Basic Idea of Simulation: Quantities of Interest

In practice...

$$
\begin{array}{ll}
Y_{i} \sim f\left(\theta_{i}, \alpha\right), & \theta_{i}=g\left(X_{i}, \beta\right) \\
Y_{i} \sim N\left(\mu_{i}, \sigma^{2}\right), & \mu_{i}=g\left(X_{i}, \beta\right)=\beta_{0}+X_{i 1} \beta_{1}+X_{i 2} \beta_{2}+\cdots
\end{array}
$$

$$
\hat{\gamma}=\left[\begin{array}{c}
\hat{\beta}_{1} \\
\hat{\hat{\beta}_{2}} \\
\vdots \\
\hat{\alpha}_{1}
\end{array}\right] \quad \hat{V}(\hat{\gamma})=\left[\begin{array}{cccc}
v_{\hat{\beta}_{11}} & v_{\hat{\beta}_{12}} & \cdots & v_{\hat{\beta}_{2} \alpha} \\
v_{\hat{\beta}_{21}} & v_{\hat{\beta}_{22}} & \cdots & v_{\hat{\beta}_{2}, \alpha} \\
\vdots & \vdots & & \vdots \\
v_{\alpha \hat{\beta}_{1}} & v_{\alpha \hat{\beta} 2} & \cdots & v_{\alpha}
\end{array}\right]
$$

we simulate parameters with M draws from the multivariate normal distribution... $\tilde{\gamma} \sim N(\hat{\gamma}, \hat{V})$

1. Choose a starting scenario, X_{c}.
2. Draw one value of $\tilde{\gamma}$, and compute $\tilde{\theta}_{c}=g\left(X_{c}, \tilde{\beta}\right)$.
3. Simulate the outcome \tilde{Y}_{c}, by taking a random draw from $f\left(\tilde{\theta_{c}}, \tilde{\alpha}\right)$.
4. Repeat M times to get the distribution of Y_{c}.

Components of Clarify

- estsimp - estimates the model and simulates the parameters
- This command must precede your regression command
- e.g.: estsimp logit y x1 x2 x3 x4
- This will save simulated β s to your dataset!
- setx - sets the values for the IVs (the \underline{X} s)
- Used after model estimation to set values of the Xs
- e.g.: setx x1 mean x2 p20 x3 . 4 x4[16], nocwdel
- functions = mean|median|min|max|p\#|math|\#|'macro'|varname[\#]
- reset values by re-issuing the command, e.g.: setx xl median
- simqi- simulates the quantities of interest
- Automates the simulation of quantities of interest for the X values you just set.
- e.g.: simqi, prval(1)
- e.g.: simqi, fd(prval(1)) changex(x4 p25 p75)

There are lots of options: Explore on your own!

Probability of Bush Vote as PID Varies

Party ID	-3	-2	-1	0	1	2	3
P(Bush)	0.049	0.089	0.156	0.263	0.408	0.571	0.719
$95 \% \mathrm{CI}$	$(.025, .091)$	$(.056, .141)$	$(.111, .223)$	$(.204, .330)$	$(.332, .487)$	$(.475, .669)$	$(.613, .818)$

And, since we know $\mathrm{P}($ Bush) is $.273(.212, .339)$ when every variable is held at its mean, we can calculate percentage changes ourselves to increase substantive interpretability.

But a picture is worth a thousand words, so it would be nice to use Clarify to generate pictures like this:

\qquad


```
version }8.
set more off
```

\# delimit;

\begin{tabular}{|c|c|}

\hline | gen plowar=:; |
| :--- |
| gen phiwar=:; gen eduaxis $=_\mathrm{n}+5$ in $1 / 12$; |
| setx gulfwarworth 1 ideology mean pid mean; local i = 6; |
| while i^{\prime} <= 17 \{; |
| setx education `i'; |
| simqi, prval(1) genpr(pi); |
| _pctile pi, p(2.5,97.5); |
| replace plowar $=r(r 1)$ ifeduaxis== ${ }^{\prime}$ '; |
| replace phiwar $=r(r 2)$ ifeduaxis==- i^{\prime}; |
| drop pi; |
| local i = ${ }^{\prime}$ '+1; | \& ```

gen plonowar=.;
gen phinowar=.;
setx gulfwarworth 0 ideology mean pid mean;
local i = 6;
while `i' <= 17 {; setx education `i';
simqi, prval(1) genpr(pi);
_pctile pi, p(2.5,97.5);
replace plonowar =r(r1) ifeduaxis== 'i';
replace phinowar =r(r2) ifeduaxis==`'i'; drop pi; local i = `i'+1;

``` \\
\hline \multicolumn{2}{|l|}{\},} \\
\hline \multicolumn{2}{|l|}{```
gen eduaxis2 \(=\) eduaxis -.2 ;
sort eduaxis;
gen midwar \(=(\) plowar + phiwar \() / 2 ;\)
gen midnowar \(=(\) plonowar + phinowar \() / 2\);
graph twoway rspike phiwar plowar eduaxis2 || line midwar eduaxis2 || rspike
phinowar plonowar eduaxis \| line midnowar eduaxis, ytitle(P(Bush) Vote)
```} \\
\hline
\end{tabular}

\section*{Conclusion}
- Models Currently Supported by Clarify
- regress • mlogit
- logit • poisson
- probit
- nbreg
- ologit
- sureg
- oprobit • weibull
- But, you really don't need Clarify to do this, so you can simulate quantities of interest for any model!
\(\checkmark\) Easy to simulate parameters because Stata saves them after estimation!
\(\checkmark\) Program the correct link function yourself!```

