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1 Simultaneity Or Reciprocal Causation in
Political Science

Suppose that a researcher believes that two variables simultaneously determine
each other. For example, a scholar of American politics may hypothesize that
incumbent spending, in a campaign, is a function of challenger spending and
simultaneously, challenger spending is a function of incumbent spending. A
scholar of international relations may hypothesize that trade is a function of
conflict and simultaneously, conflict is a function of trade. Finally, a compara-
tivist may hypothesize that economic development is a function of democracy
and simultaneously, democracy is a function of economic development. All
these hypotheses share the common feature that the variables of interest are
simultaneously determined. For example, challenger spending leads to changes
in incumbent spending which in turn leads to changes in challenger spending
which then leads to a change in incumbent spending, etc... The question be-
comes can such models be estimated using typical statistical procedures? If not,
why not and what estimation methods can and should be used?

2 Background

Equations (1) & (2) present a generic two-equation model,1

y∗1 = γ1y
∗
2 + β

′

1X1 + ε1 (1)

y∗2 = γ2y
∗
1 + β

′

2X2 + ε2 (2)

As can be seen from the above equations, y∗1 & y∗2 simultaneously determine
each other. Changes in y∗2 will lead to changes in y∗1 via (1). However, the
resulting changes in (1) will immediately lead to changes in y∗2 via (2). Variables
that display such relationships are termed endogenous variables. So in the above
equations, y∗1 and y∗2 would be termed endogenous variables. The remaining

1The following discussion borrows from Gujarati (2003: Ch. 18-20)
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variables are termed exogenous. By itself, endogeneity is not a problem, the
problem is that models containing such variables cannot be estimated by typical
estimation procedures. For example, assume that y∗1 & y∗2 are observed as
follows:

y1 = y∗1

y2 = y∗2

That is, y∗1 & y∗2 are fully observed.
OLS cannot be used to estimate these models, because the relationship spec-

ified by the equations violates the OLS assumption of zero covariance between
the disturbance term and the independent variables. That is, in the above
equations, the assumption that

E(ε1|y∗2) = E(ε2|y∗1) = 0

Or
Cov(y∗2 , ε1) = Cov(y∗1 , ε2) = 0

will be violated. To see this, note that changes in ε1 will lead to changes in
y∗1 in equation (1). These changes in turn will lead to changes in y∗2 via y∗1 in
equation (2). Thus, y∗2 is correlated with ε1, i.e., is a function of ε1, indirectly.
So information on y∗2 will give information on ε1 and so they are not mean
independent. The same logic applies to the relationship between ε2 and y∗1 .

Estimation of such models, via OLS, will lead to biased and inconsistent
estimates of the coefficients. The most important part of the latter statement
is the inconsistency, since no matter the sample size, the coefficients will never
converge to the true population coefficients. To see this, consider a simplification
of equation (1) and (2). Equation (2) is simplified to being an identity and
equation (1) is simplified so there is only a constant and an endogenous variable.
So now we have the following two equations:

y∗1 = α1 + γ1y
∗
2 + ε1

y∗2 = y∗1 + x

where again, we assume that the y∗1 & y∗2 are observed in the following
manner:

y1 = y∗1

y2 = y∗2

and x is some variable with no impact on y∗1 . Now it is well known that the
OLS estimate of γ1 is obtained from the following formula:

γ̂1 =
Σ(y∗1 − ȳ∗1)(y∗2 − ȳ∗2)

Σ(y∗2 − ȳ∗2)2

Rewriting y∗1 − ȳ∗1 = ỹ∗1 and y∗2 − ȳ∗2 = ỹ∗2 , we have

γ̂1 =
Σ(y∗1)(ỹ∗2)
Σ(ỹ∗2)2
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Substituting for y∗1 , we get

γ̂1 =
Σ(α1 + γ1y

∗
2 + ε1)(ỹ∗2)

Σ(ỹ∗2)2

γ̂1 =
Σ(α1ỹ

∗
2 + γ1y

∗
2 ỹ∗2 + ε1ỹ

∗
2)

Σ(ỹ∗2)2

γ̂1 =
Σα1ỹ

∗
2 + Σγ1y

∗
2 ỹ∗2 + Σε1ỹ

∗
2

Σ(ỹ∗2)2

γ̂1 =
α1Σỹ∗2 + γ1Σy∗2 ỹ∗2 + Σε1ỹ

∗
2

Σ(ỹ∗2)2

γ̂1 =
α1Σỹ∗2
Σ(ỹ∗2)2

+
γ1Σy∗2 ỹ∗2
Σ(ỹ∗2)2

+
Σε1ỹ

∗
2

Σ(ỹ∗2)2

Noting the following:
Σỹ∗2 = 0

Σ(ỹ∗2)2 = Σy∗2 ỹ∗2

We end up with

γ̂1 =
α1 ∗ 0
Σ(ỹ∗2)2

+
γ1Σ(ỹ∗2)2

Σ(ỹ∗2)2
+

Σε1ỹ
∗
2

Σ(ỹ∗2)2

γ̂1 = γ1 +
Σε1ỹ

∗
2

Σ(ỹ∗2)2

Taking probability limits (plim), we have

plim(γ̂1) = plim(γ1) + plim(
Σε1ỹ

∗
2

Σ(ỹ∗2)2
)

plim(γ̂1) = γ1 + plim

(
Σε1ỹ∗

2
N

Σ(ỹ∗
2 )2

N

)
(3)

Note that
Σ(ỹ∗2)2

N
is nothing but the variance of y∗2 and we can write it as σ2

y.
Now if plim (Σε1ỹ

∗
2) does not converge to zero, it is evident that the estimate γ̂1

will be biased and inconsistent. What does plim (Σε1ỹ
∗
2) converge to? To see

that it is not zero, note the following, we return again to our simplified example
above:

y∗1 = α1 + γ1y
∗
2 + ε1 (4)

y∗2 = y∗1 + x (5)

Inserting (4) into (5) and solving for y∗2 we get

y∗2 = α1 + γ1y
∗
2 + ε1 + x

y∗2 − γ1y
∗
2 = α1 + ε1 + x
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y∗2(1 − γ1) = α1 + ε1 + x

y∗2 =
α1

(1 − γ1)
+

ε1

(1 − γ1)
+

x

(1 − γ1)
(6)

Taking expectations, we obtain

E(y∗2) = E(
α1

(1 − γ1)
) + E(

ε1

(1 − γ1)
) + E(

x

(1 − γ1)
)

Noting that the E(ε1) = 0 (by assumption) and α1, x & (1− γ1) are constants,
the above becomes

E(y∗2) =
α1

(1 − γ1)
+

0
(1 − γ1)

+
x

(1 − γ1)

E(y∗2) =
α1

(1 − γ1)
+

x

(1 − γ1)

Subtracting this from (6), we get

y∗2 − E(y∗2) =
α1

(1 − γ1)
− α1

(1 − γ1)
+

x

(1 − γ1)
− x

(1 − γ1)
+

ε1

(1 − γ1)

y∗2 − E(y∗2) =
ε1

(1 − γ1)
(7)

Now
ε1 − E(ε1) = ε

because E(ε1) = 0. Therefore,

Cov(y∗2 , ε1) = E[y∗2 − E(y∗2)][ε1 − E(ε1)]

Cov(y∗2 , ε1) = E[y∗2 − E(y∗2)][ε1]

Replacing y∗2 − E(y∗2) with (7), we get

Cov(y∗2 , ε1) = E[
ε1

(1 − γ1)
][ε1]

Cov(y∗2 , ε1) = E(
ε2
1

(1 − γ1)
)

Cov(y∗2 , ε1) =
σ2

1

(1 − γ1)

Substituting this into the numerator of (3), and recalling that we replaced
Σ(ỹ∗

2 )2

N with σ2
y. we have

plim(γ̂1) = γ1 +
σ2
1

(1−γ1)

σ2
y
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plim(γ̂1) = γ1 +
1

(1 − γ1)
σ2

1

σ2
y

Given that both σ2
1 & σ2

y are positive, plim (γ̂1) is not only biased but this bias
remains no matter the sample size and thus γ̂1 is not a consistent estimator of
γ1. What can be done in such a situation? Well, one possible solution would be
to see if it is possible to separate or partition the endogenous variable into a part
that is correlated with the disturbance term and a part that is not correlated
with the disturbance term and then use the latter to estimate the model? As
we will see, this is, in general, quite possible.

3 Instrumental Variable (IV) Estimation

3.1 What is IV estimation

Instrumental variable estimation is a broad class of estimation techniques for
dealing with, among other things, correlation between independent variables and
disturbance terms. In a nutshell, IV estimation requires that a researcher find
a variable(s) or create a variable that is highly correlated with the endogenous
variable and uncorrelated with the disturbance term. Symbolically, we need to
find a variable z such that

plim
(zy∗

N

)
= σzy > 0

plim
(zε

N

)
= σzε = 0

The term given to the variable z is instrumental variable. What is it an instru-
ment of or for? It is an instrument (proxy) for the endogenous variable, that
is, we will use it in place of the endogenous variable. How do you find or create
such an instrument. With respect to the former, this is usually very difficult
and when one is found, its suitability is questioned.2 I believe the third method
lunch will go into more detail with respect to this issue and so I will say no
more.
The most common avenue taken by researchers is to create an instrument, using
the method of two-stage least squares (2SLS). Following the theory behind IV
estimation, 2SLS creates an instrument that is correlated with the endogenous
variable while uncorrelated with the disturbance term. That is, it separates the
endogenous variable into two parts, one correlated with the disturbance term
and another uncorrelated with the disturbance term. And then uses the lat-
ter, in place of the original endogenous variable to estimate the model. The
procedure to create such a variable is discussed in the next section.

2See Bound, Joah, David A. Jaeger, and Regina M. Baker (1995). ”Problems With In-
strumental Variables Estimation When the Correlation Between the Instruments and the
Endogenous Explanatory Variable is Weak,” Journal of the American Statistical Association
Vol. 90, N0. 430.
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3.2 Two-Stage Least Squares (2SLS)

Two stage least squares, as the name suggests, is a two stage process. In the
first stage, the endogenous variable is regressed on all the exogenous variables
and the predicted value of this regression is obtained. In the second stage,
the predicted values replace the original endogenous variables in the equation
and estimation is carried out. Returning to our original example, we have the
following two equations, that we wish to estimate (these are called the structural
equations)

y∗1 = γ1y
∗
2 + β

′

1X1 + ε1 (8)

y∗2 = γ2y
∗
1 + β

′

2X2 + ε2 (9)

Again, assume that y∗1 & y∗2 are fully observed, i.e.,

y1 = y∗1

y2 = y∗2

The first stage in 2SLS is to estimate the following equations, via OLS, since
y∗1 & y∗2 are fully observed

y∗1 = β
′

1X1 + β
′

2X2 + υ1

= Π1X + υ1 (10)

y∗2 = β
′

1X1 + β
′

2X2 + υ2

= Π2X + υ2 (11)

Where X is a matrix containing all the exogenous variables in (8) and (9). Note
that the term given to (10) and (11) is reduced form equations and they are
equations that express the endogenous variables solely in terms of the exogenous
variables. From (10) and (11), we obtain

ŷ∗1 = Π̂1X (12)

ŷ∗2 = Π̂2X (13)

This completes the first stage of 2SLS.3

In the second stage, we replace y∗1 & y∗2 in (8) and (9) with ŷ∗1 and ŷ∗2 ,
respectively, and estimate the equations (8) and (9) with OLS. That is we now
estimate,

y∗1 = γ1ŷ
∗
2 + β

′

1X1 + ε1 (14)

3In certain situations, not discussed here, it is possible to recover the coefficient estimates
in of the original model from this stage alone. If this is done, then the method used is called
Indirect Least Squares.
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y∗2 = γ2ŷ
∗
1 + β

′

2X2 + ε2 (15)

The resulting coefficients estimates will be consistent, although, in small sam-
ples the IV estimator will be a biased estimator, as explained below. Note what
2SLS does, in (10) we created a new variable ŷ∗1 from all the exogenous variables
in both equation (10) & (11). By construction, this variable will be uncorre-
lated with ε1 since the exogenous variables in (10) & (11) are assumed to be
uncorrelated with the error terms. Thus, the new variable is uncorrelated with
the error term by construction and using it in (17) does not violate any OLS
assumptions.

3.3 Issues in 2SLS and IV Estimation in General

When applying 2SLS there are certain issues that must be considered and kept
in mind.

1. IDENTIFICATION
Identification is generally a tedious part of IV estimation and 2SLS and
I will not go into the dense detail that most books go into. However,
given how 2SLS is conducted it should be clear that we have to place
certain restrictions on the equations. For 2SLS, the identification issue
boils down to insuring that at least one exogenous variable appearing in
one equation does not appear in the other equation. Furthermore, the
more such restrictions (exclusions) the better. Why? Look back to the
following equations:

y∗1 = γ1ŷ
∗
2 + β

′

1X1 + ε1 (16)

y∗2 = γ2ŷ
∗
1 + β

′

2X2 + ε2 (17)

Remember that ŷ∗2 was constructed by regressing it on all the exogenous
variables. If all the exogenous variables appear in both equations, that is
if the original structural equations looked like this:

y∗1 = γ1y
∗
2 + β

′

1X1 + β
′

1X2 + ε1 (18)

y∗2 = γ2y
∗
1 + β

′

2X1 + β
′

2X2 + ε2 (19)

Inserting ŷ∗2 , which is a linear combination of X1 and X2, into (18) would
result in perfect collinearity and OLS estimation would not work since the
matrix will not be invertible. Exclusion insures that perfect collinearity
will not occur.

2. QUALITY OF INSTRUMENT
As stated above, the purpose of 2SLS is to create an instrument that is
not correlated with the error term but is correlated with the endogenous
variable. Now recall that this instrument stands in or acts as a proxy for
the endogenous variable and as such the higher the correlation with the
endogenous variable the better. Again, I believe that the third method
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lunch will discuss all of this so I will not say much more, except that
goodness of fit measures should be looked at after the first stage.4

3. 2SLS INSTRUMENTS ARE BIASED
The literature sometimes ignores the fact that instruments from 2SLS
are biased in small samples. Why? In the first stage the instruments
are generated from regressions. As such they are linear combinations
of the exogenous variables and the estimated coefficients in the reduced
form equations. Thus, the instruments (i.e., the predicted values) are
themselves a function of the error terms in the reduced form equations,
which in turn are components of the error terms in the structural equations
and thus, the instruments are likely to be correlated with the error terms
in the structural equations. This is something that cannot be avoided and
this is why the emphasis in the literature is on the consistency of using
2SLS, since as the same size increases this correlation between instruments
and error terms disappear. This correlation, however, does not disappear,
no matter the sample size, if the endogenous variables are used.5

4. STANDARD ERRORS ARE WRONG
Standard errors from 2SLS will be wrong and need to be corrected. To
see why this is the case let us look at a single equation from the two given
above. So let us look at the following equation:

y∗1 = γ1y
∗
2 + β

′

1X1 + ε1 (20)

This is the equation we want, however, in 2SLS, we estimate

y∗1 = γ1ŷ
∗
2 + β

′

1X1 + ε1 (21)

Thus, the error term ε1 is really made up of ε1 + γ1υ̂1. To see this, recall
that y∗2 = ŷ∗2 + υ̂1, substituting this for y∗2 in (20), we have

y∗1 = γ1(ŷ∗2 + υ̂1) + β
′

1X1 + ε1

y∗1 = γ1ŷ
∗
2 + γ1υ̂1) + β

′

1X1 + ε1

y∗1 = γ1ŷ
∗
2 + β

′

1X1 + (ε1 + γ1υ̂1)

y∗1 = γ1ŷ
∗
2 + β

′

1X1 + ε∗1 (22)

Where ε∗1 = ε1 + γ1υ̂1. The form of the correction depends on nature of
the endogenous variables and this will be discussed in the next section of
the paper.

4For an excellent exposition (although not fully from a 2SLS perspective) see Bartels, L.
M.(1991) ”Instrumental and Quasi-Instrumental Variables,” American Journal of Political
Science, 33, 777-800.

5See Gujarati (2003) p. 772, ft. 14.
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4 Different Forms of Simultaneous Equations and
How to Estimate them

So far all the examples given have dealt with fully observed variables. However,
sometimes this is not the case (as political scientist are well aware). So in
this section, I present the different possible equations depending on how the
endogenous variables are observed and what this means for estimating them.
All estimation will be in the 2SLS context, however, with certain modifications.
Let us return to our generic two equation model:

y∗1 = γ1y
∗
2 + β

′

1X1 + ε1 (23)

y∗2 = γ2y
∗
1 + β

′

2X2 + ε2 (24)

The proper estimation strategy to be used depends on how y∗1 & y∗2 are
observed.6

A. First, if y∗1 & y∗2 are observed as follows7

y1 = y∗1

and
y2 = y∗2

That is, both variables are fully observed, then we have the typical si-
multaneous equations models discussed in the statistical literature. The
2SLS procedure uses all OLS procedures. That is, in the first stage the
reduced form equations are estimated using OLS and in the second stage,
the modified structural equations are also estimated via OLS. So we have
the following estimation steps:
Step 1: estimate

y∗1 = Π
′

1X + υ1 (25)

y∗2 = Π
′

2X + υ2 (26)

Where X is a matrix containing all the exogenous variables in the system
of equations. Obtain, ŷ∗1 and ŷ∗2 , then go to the next step.
Step 2: estimate

y∗1 = γ1ŷ
∗
2 + β

′

1X1 + ε1 (27)

y∗2 = γ2ŷ
∗
1 + β

′

2X2 + ε2 (28)

The estimated coefficients from this last step are biased but consistent.
The final step is the correction of the standard errors and in this case, is
a simple two step process in which the coefficients of each parameter in
the final step are multiplied by the ratio of the standard deviation of the
disturbance term in the second step estimates to the standard deviation

6The following discussion borrows from Maddala (1983: 242-247).
7This corresponds to Maddala’s (1983, 243) model 1.
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of the disturbance term in the original structural equation.8 That is, in
the second step we estimate and obtain

y∗1 = γ̂1ŷ
∗
2 + β̂

′

1X1 + ε̂1 (29)

and from this obtain
Σ(ε̂∗1)2

N−k
= σ̂2

ε∗1
. Recalling that ε∗1 = ε1 + γ1υ̂1. Then

estimate and obtain
y∗1 = γ̂1y

∗
2 + β̂

′

1X1 + ε̂1

(notice no hat on y∗2 and obtain Σ(ε̂)2

N−k
= σ̂2

ε1
. Multiply each coefficient’s

standard error in equation (29) by
σ̂ε1

σ̂ε∗1
. Now do the same for the other

equation.
STATA has build in procedures to estimate such models.Check out the
help file for reg3. Two caveats, however, the above estimation and cor-
rection does not take into consideration the possible correlation between
error terms across equations. Methods to do this involve something called
three stages least squares, I have not done any work in this vein and so
I am not familiar with the math and so I will not discuss it. The com-
mand reg3 has a built in option 2SLS and this will perform the method
discussed above. Although it is not clear whether it implements the cor-
rection outline above for the standard errors. So make sure to check the
documentation.

B. If we face a situation in which y∗1 & y∗2 are observed as follows:9

y1 = y∗1

y2 = 1 if y∗2 > 0
y2 = 0 otherwise

That is, y∗1 is fully observed and y∗2 is observed as a dichotomy, then we
need to modify the 2SLS process and the name given to it is: two stage
probit least squares (2SPLS). 10 The modified 2SPLS process is this: First
estimate the reduced form equations, which are as follows:
Step 1: estimate the following equations

y∗1 = Π
′

1X + υ1 (30)

y∗2 = Π
′

2X + υ2 (31)

8Gujarati (2003: 791).
9This corresponds to Maddala’s (1983, 244-5) model 3.

10To the best of my knowledge, the term 2SPLS was given to the procedure by Alvarez
and Glasgow (2000). Other terms for this procedure include Generalized Two-Stage Probit ;
Two-Step Probit Estimator. I prefer 2SPLS because it provides a more complete description
of steps and estimations used.
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Equation (30) is estimated via OLS and the predicted value is obtained.
Equation (31) is estimated via probit and here we obtain the linear pre-
dictor for use in the second stage.11

Step 2: estimate the following equations

y∗1 = γ1ŷ
∗
2 + β

′

1X1 + ε1 (32)

y∗2 = γ2ŷ
∗
1 + β

′

2X2 + ε2 (33)

Equation (32) is estimated using OLS and equation (33) via Probit. Again,
however, the standard errors are wrong and need to be corrected. The
correction in this case is a little more detailed and involve estimating the
following variance covariance matrices. First define the following:

α
′

1 = (γ1σ2, β
′

1) (34)

α
′

2 = (
γ2

σ2
,
β

′

2

σ2
) (35)

Cov(υ1, υ2) =
(

σ2
1 σ12

σ12 1

)
(36)

c = σ2
1 − 2γ1σ12 (37)

d =
(

γ2

σ2

)
σ2

1 − 2
(

γ2

σ2

)(
σ12

σ2

)
(38)

H = (Π2, J1) (39)

G = (Π1, J2) (40)

V0 = V ar(Π̂2) (41)

With these definitions at hand, and noting that in Probit models σ2 is
normalized to 1, the corrected variance covariance matrices for α1 & α2
can be obtained as follows:

V (α̂1) = c(H
′
X

′
XH)−1 + (γ1σ2)2(H

′
X

′
XH)−1H

′
X

′
V0X

′
XH(H

′
X

′
XH)−1 (42)

V (α̂2) = (G
′
V −1
0 G)−1 + d(G

′
V −1
0 G)−1G

′
V −1
0 (X

′
X)−1V −1

0 G(G
′
V −1
0 G)−1 (43)

Where

– σ2
1 is the variance of the residuals from (30)

– V0 is the variance-covariance matrix of (31)

– J1 and J2 are matrices with ones and zeros such that XJ1 = X1 and
XJ2 = X2

11This is option predict name, xb after probit in STATA.
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– σ12 is obtained using the formula 1
N

Σ(dtυ̂1)

f̂

where
N is the number of observations
dt is the dichotomous endogenous variable,
υ̂1 is the residuals from (30) and
f̂ is (31) evaluated using the standard normal density.

Currently, STATA does not have a procedure to implement the estimation
of these type models. So, for the paper with Dr. Reuveny and Dr. Pollins,
I wrote such a procedure (cdsimeq) and it implements all the necessary
steps to obtain consistent estimates and corrected standard errors.

The syntax is as follows:
cdsimeq (continuous endogenous depvar continuous model exogenous indvar(s))

(dichotomous endogenous depvar dichotomous model exogenous indvar(s))
[
if

exp
] [

in range
] [

, NOFirst NOSecond asis INStpre ESTimates hold
]

The options for the cdsimeq command are as follows:

– NOFirst specifies that the displayed output from the first stage estimations be
suppressed.

– NOSecond specifies that the displayed output from the second stage estimations
be suppressed.

– asis is Stata’s asis option, see [R] Probit.

– INStpre specifies that the created instruments in the first stage are not to be
discarded after the program terminates. Note that if this option is specified and
the program is re-run, an error will be issued saying that the variables already
exist. Therefore, these variables have to be dropped or renamed before cdsimeq
can be re-run.

– ESTimates hold retains the estimation results from the OLS estimation, with
corrected standard errors, in a variable called model 1 and estimation results
from the Probit estimation, with corrected standard errors, in a variable called
model 2.12 Note that if this option is specified the above variables must be
dropped before cdsimeq command is re-run again with the estimates hold option.

The cdsimeq command provides the following saved estimation results:

e(sigma 11) σ11 e(sigma 12) σ12

e(gamma 2) γ2 e(gamma 2 sq) γ2
2

e(MA c) σ2
1 − 2γ1σ12 e(MA d) ( γ2

σ2
)σ2

1 − 2( γ2
σ2

)(σ12
σ2

)

e(F) (F from 1st stage) e(R) (OLS R from 1st stage)
e(adj R) (adjusted R from 1st stage)e(chi2) (Probit Chi2 from 1st stage)
e(r2 p) (Probit Pseudo R from 1st

stage)

Finally, here is a stylized output from running the command, for illustra-
tive purposes only:

12When this option is specified the created instruments are also preserved.
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cdsimeq (continuous exog3 exog2 exog1 exog4) (dichotomous exog1 exog2 exog5 exog6 exog7)

NOW THE FIRST STAGE REGRESSIONS

Source | SS df MS Number of obs = 1000
-------------+------------------------------ F( 7, 992) = 209.51

Model | 617.390728 7 88.1986754 Prob > F = 0.0000
Residual | 417.608638 992 .420976449 R-squared = 0.5965

-------------+------------------------------ Adj R-squared = 0.5937
Total | 1034.99937 999 1.0360354 Root MSE = .64883

------------------------------------------------------------------------------
continuous | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
exog3 | .1584685 .0218622 7.25 0.000 .1155671 .2013699
exog2 | -.009669 .0216656 -0.45 0.655 -.0521846 .0328466
exog1 | .1599552 .0212605 7.52 0.000 .1182345 .2016759
exog4 | .3165751 .0224563 14.10 0.000 .2725079 .3606424
exog5 | .4972074 .021356 23.28 0.000 .4552993 .5391156
exog6 | -.0780172 .0217546 -3.59 0.000 -.1207076 -.0353268
exog7 | .1611768 .022103 7.29 0.000 .1178028 .2045508
_cons | .0107516 .0206197 0.52 0.602 -.0297117 .051215

------------------------------------------------------------------------------

Iteration 0: log likelihood = -692.49904
Iteration 1: log likelihood = -424.29883
Iteration 2: log likelihood = -382.05354
Iteration 3: log likelihood = -377.16723
Iteration 4: log likelihood = -377.07132
Iteration 5: log likelihood = -377.07127

Probit estimates Number of obs = 1000
LR chi2(7) = 630.86
Prob > chi2 = 0.0000

Log likelihood = -377.07127 Pseudo R2 = 0.4555

------------------------------------------------------------------------------
dichotomous | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
exog3 | .2134477 .0562479 3.79 0.000 .1032039 .3236916
exog2 | .2113067 .0537592 3.93 0.000 .1059406 .3166728
exog1 | .4559128 .060367 7.55 0.000 .3375958 .5742299
exog4 | .3903133 .0620052 6.29 0.000 .2687852 .5118413
exog5 | .7595488 .0646746 11.74 0.000 .6327889 .8863088
exog6 | .8546139 .0689585 12.39 0.000 .7194577 .98977
exog7 | -.1669142 .0566927 -2.94 0.003 -.2780298 -.0557986
_cons | .0835167 .0528104 1.58 0.114 -.0199899 .1870232

------------------------------------------------------------------------------

NOW THE SECOND STAGE REGRESSIONS WITH INSTRUMENTS

Source | SS df MS Number of obs = 1000
-------------+------------------------------ F( 5, 994) = 141.20

Model | 429.827896 5 85.9655791 Prob > F = 0.0000
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Residual | 605.17147 994 .608824416 R-squared = 0.4153
-------------+------------------------------ Adj R-squared = 0.4124

Total | 1034.99937 999 1.0360354 Root MSE = .78027

------------------------------------------------------------------------------
continuous | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
I_dichotom~s | .2575918 .0214505 12.01 0.000 .2154983 .2996854

exog3 | .0425202 .026735 1.59 0.112 -.0099435 .0949838
exog2 | .0118544 .0267226 0.44 0.657 -.0405848 .0642937
exog1 | .0077736 .0282168 0.28 0.783 -.0475978 .063145
exog4 | .3186363 .0283114 11.25 0.000 .2630793 .3741933
_cons | .0121851 .0248091 0.49 0.623 -.0364991 .0608692

------------------------------------------------------------------------------

Iteration 0: log likelihood = -692.49904
Iteration 1: log likelihood = -424.31527
Iteration 2: log likelihood = -382.0779
Iteration 3: log likelihood = -377.20169
Iteration 4: log likelihood = -377.10665
Iteration 5: log likelihood = -377.10661

Probit estimates Number of obs = 1000
LR chi2(6) = 630.78
Prob > chi2 = 0.0000

Log likelihood = -377.10661 Pseudo R2 = 0.4554

------------------------------------------------------------------------------
dichotomous | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
I_continuous | 1.262866 .1604171 7.87 0.000 .9484539 1.577277

exog1 | .2509257 .0649992 3.86 0.000 .1235297 .3783218
exog2 | .2260372 .0529623 4.27 0.000 .1222331 .3298413
exog5 | .1291197 .0958474 1.35 0.178 -.0587377 .3169771
exog6 | .9560943 .0721625 13.25 0.000 .8146584 1.09753
exog7 | -.3712822 .0674939 -5.50 0.000 -.5035678 -.2389966
_cons | .0707977 .0528105 1.34 0.180 -.0327091 .1743044

------------------------------------------------------------------------------

NOW THE SECOND STAGE REGRESSIONS WITH CORRECTED STANDARD ERRORS

------------------------------------------------------------------------------
continuous | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
I_dichotom~s | .2575918 .1043332 2.47 0.014 .0528532 .4623305

exog3 | .0425202 .1291476 0.33 0.742 -.210913 .2959533
exog2 | .0118544 .1290542 0.09 0.927 -.2413956 .2651044
exog1 | .0077736 .1363699 0.06 0.955 -.2598323 .2753795
exog4 | .3186363 .1367953 2.33 0.020 .0501956 .587077
_cons | .0121851 .1198708 0.10 0.919 -.2230438 .2474139

------------------------------------------------------------------------------
------------------------------------------------------------------------------
dichotomous | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
I_continuous | 1.262866 .7397385 1.71 0.088 -.1869952 2.712726

exog1 | .2509257 .3130259 0.80 0.423 -.3625938 .8644452
exog2 | .2260372 .2737467 0.83 0.409 -.3104964 .7625708
exog5 | .1291197 .4827168 0.27 0.789 -.8169878 1.075227
exog6 | .9560943 .2825678 3.38 0.001 .4022716 1.509917
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exog7 | -.3712822 .3265683 -1.14 0.256 -1.011344 .2687799
_cons | .0707977 .2666057 0.27 0.791 -.4517399 .5933353

------------------------------------------------------------------------------

C. If we face a situation in which y∗1 & y∗2 are observed as follows:13

y1 = y∗1

y2 = y∗2 if y∗2 > 0
y2 = 0 otherwise

Then we have what Amemiya (1979) calls a simultaneous equation tobit
model. Estimation of such models is similar to estimation of 2SPLS, ex-
cept that instead of probit regressions, tobit regressions are used in the
appropriate stages. Again, standard errors are wrong and the correction
is a bit detailed. Readers interested in estimating such a model can canni-
balize cdsimeq to estimate such a model, since the estimation procedures
for both models are very similar. Amemiya (1979) and Maddala (1983)
discuss the estimation of these type of models.

D. If we face a situation in which y∗1 & y∗2 are observed as follows:14

y1 = 1 if y∗1 > 0 (44)
y1 = 0 otherwise
y2 = 1 if y∗2 > 0
y2 = 0 otherwise

Then we a simultaneous probability model. Maddala (1983) discusses the
estimation and correction of the standard errors. This discussion will not
be reproduced here.

Finally, there are two other possibilities, Maddala(1983) discusses their esti-
mation, however, he says that the derivation of the covariance matrices is to
complicated and he does not discuss them.

5 Interpretation

How do we interpret the results and more specificially the coefficients of the
instrumental variables? Stay tuned to the discussion during the method lunch.

6 Conclusion

Simultaneous relationships are probably a lot more common than is presented
in the political science literature. In our work, we should consider such possi-
bilities. I am not arguing that everything simultaneously determines each other

13This corresponds to Maddala’s (1983, 243–4) model 2.
14This corresponds to Maddala’s (1983, 246–7) model 6.
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(although this could be argued), instead, in our research we should consider
such possibilities and at least eliminate them before proceeding with our typical
single equation estimation methods.
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