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Overview

We will cover two topics that are not usually covered in
introductory maximum likelihood estimation (MLE) courses:

• Interpretation of multiplicative interaction terms in nonlinear
models

• Models for truncation and sample selection (Tobit and the
Heckman selection model)



Interaction terms in nonlinear models



Interaction terms in linear models (recap)

• We often have conditional hypotheses that can be captured by
multiplicative interaction models. E.g.:

H1: An increase in X is associated with an increase in Y when
condition Z is met, but not when condition Z is absent.

• Suppose that Y and X are continuous and Z is dichotomous.
We can write a simple linear interactive model:

Y = β0 + β1X + β2Z + β3XZ + ε

• The marginal effect of X on Y (the effect of a one-unit change
in X on Y) is given by:

∂Y
∂X = β1 + β3Z

• When Z = 0, ∂Y
∂X = β1. When Z = 1, ∂Y

∂X = β1 + β3.



Interaction terms in linear models

Figure: Brambor et al. 2006



Interaction terms in linear models

• We’re usually not interested in the statistical significance or
insignificance of the model parameters themselves. We care
about ∂Y

∂X , so we want to know the standard error of this
quantity, which is given by:

σ̂ ∂Y
∂X

=
√

var(β̂1) + Z 2var(β̂3) + 2Zcov(β̂1β̂3)

• If Z is dichotomous, we need only compute s.e.’s for ∂Y
∂X for

when Z = 0 and Z = 1.

• If Z is continuous, useful to plot ∂Y
∂X against a substantively

meaningful range of Z, using same formula above for the 95%
confidence intervals



Interaction terms in linear models

Figure: Marginal effect of temporally proximate presidential elections on the effective
number of electoral parties. Example from Brambor et al. 2006.



Interaction terms in nonlinear models

• What about nonlinear models?

• Some have argued that it’s not necessary to include an
interaction term, because models like logit and probit force
effect of all independent variables to depend on each other.
E.g., consider the probit model:

E [Y ] = Φ(β0 + β1X + β2Z ) = Φ(·)

• Marginal effect of X is: ∂Φ(·)
∂X = β1Φ′(·)

• Marginal effect of X depends on other independent variables
whether the hypothesis being tested is conditional or not. It’s
just a function of how the model is parameterized. To
substantively test a conditional hypothesis, one must include
an interaction term, just like in the linear case (see Brambor
et al. 2006)



Interaction terms in nonlinear models

• Ai & Norton 2003 show that interpreting interaction effects in
nonlinear models is a lot more complicated than in linear ones

• For example, in our previous linear interactive model with a
continuous Y, interaction effect of X and Z is cross-derivative
of E[Y]:

∂2E [Y |X ,Z ]
∂X∂Z = β3

(But remember that not much can be learned from the
statistical significance of β3 alone)



Interaction terms in nonlinear models

• However, intuition does not extend to nonlinear models.
Consider a dichotomous y , two independent variables of
interest, x and z , and a vector of additional independent
variables W. A simple interactive probit model:

E [y |x , z ,W] = Φ(β1x + β2z + β3xz + Wβ) = Φ(·)

• The interaction effect of x and z is the cross-derivative of the
expected value of y :

∂2Φ(·)
∂x∂z = β3Φ′(·) + (β1 + β3z)(β2 + β3x)Φ′′(·)

• Very hard to interpret!



Interaction terms in nonlinear models

Implications for interactive effects in nonlinear models (Ai &
Norton 2003):

• Interaction effect could be nonzero even if β3 = 0

• Statistical significance of interaction effect cannot be tested
with t-test on the coefficient of interaction term β3

• Interaction effect is conditional on independent variables in
non-trivial ways

• Interaction effect may have different signs for different values
of covariates; sign of β3 does not necessarily indicate sign of
interaction effect



Interaction terms in nonlinear models

What to do?

Ai & Norton offer “formulas for the magnitude and standard errors
of the estimated interaction effect in general nonlinear models”,
but Greene recommends visual interpretation.

Greene 2010:
“(. . . ) the proposals made by Ai and Norton are likewise
uninformative about interaction effects in the model. (. . . ) the
indicated relationships are inherently difficult to describe
numerically by simple summary statistics, but graphical devices are
much more informative.”



Example

Data: U.S. House of Representatives vote on NAFTA (1993). 435
observations and 5 variables.
Dependent variable:

• vote: whether (=1) or not (=0) the House member in
question voted for NAFTA.

Independent variables:

• democrat: whether the House member in question is a
Democrat (=1) or a Republican (=0).

• pcthispc: the percentage of the House member’s district
who are of Latino/Hispanic origin.

• cope93: 1993 AFL-CIO (COPE) voting score of the member
in question; ranges from 0 to 100, with higher values
indicating more pro-labor positions.



Example

We have the following hypotheses:

• Higher COPE scores will correspond to lower probabilities of
voting for NAFTA

• The effect of the former will be moderated by political party.
In particular, the (negative) effect of COPE scores on
pro-NAFTA voting will be greater for Democrats than for
Republicans.

So we estimate an interactive logit model:

Pr(Y = 1|X ) =
Λ(β0+β1democrat+β2cope93+β3democrat∗cope93+β4pcthispc),

where Λ is the logistic CDF.



Example

Figure: Logit parameter estimates for the probability of voting for NAFTA.



Example
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Figure: Predicted probability of voting for NAFTA as a function of pro-labor score
(COPE93) for Democrats (continuous line) and Republicans (dashed line). Shaded
areas are 95% bootstrapped CIs.



Example
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Figure: Discrete change in predicted probability of voting for NAFTA from a
mean-centered, 2-standard-deviation change in COPE93 for Democrats and
Republicans. Vertical bars are 95% bootstrapped CIs.



Example

Software implementation:

• Example R code available with the accompanying presentation
materials

• Stata users: Be careful when using multiplicative interactions
in Stata. The most common way of creating interaction terms
is to generate a new variable equal to the product of the two
interacting variables. If you do this, Stata will treat the
interaction term as a third, distinct variable rather than two
variables being interacted. When computing predicted
probabilities, you might get wrong results. Make sure you
know what the functions you are using are doing.



Interaction terms in nonlinear models

Recommended reading:

• Brambor, Thomas, William R. Clark & Matt Golder. 2006.
“Understanding Interaction Models: Improving Empirical
Analyses.” Political Analysis 14: 63–82.

• Braumoeller, Bear F. 2004. “Hypothesis Testing and
Multiplicative Interaction Terms.” International Organization
58(Fall 2004): 807–820.

• Ai, Chunrong & Edward C. Norton. 2003. “Interaction terms
in logit and probit models.” Economic Letters 80: 123–129.

• Greene, William. 2010. “Testing hypotheses about interaction
terms in nonlinear models.” Economic Letters 107: 291–296.

• Berry, William D., Jacqueline DeMeritt & Justin Esarey. 2010.
“Testing for Interaction in Binary Logit and Probit Models: Is
a Product Term Essential?” American Journal of Political
Science 54(1): 248–266.



Models for sample selection



Censoring and truncation

Two main causes of incompletely observed data:

• Truncation: some observations on both the dependent and
independent variables are lost.

• E.g.: Income may be the dependent variable and only
low-income people are included in the sample.

• Censoring: information on the dependent variable is lost, but
not on the regressors.

• E.g.: People of all income levels may be included in the
sample, but the income of high-income people may be
top-coded and reported only as exceeding $100,000 per year.

• E.g.: Level of delegation of authority to international treaties
may be the dependent variable. All country-pairs may be
included in the sample, but the delegation level is only
recorded for those dyads that have actually signed a treaty.
There is no information on what delegation level would be
chosen by two dyads who have not signed a treaty.

Truncation entails greater information loss than censoring.



Censoring and truncation

Figure: Long 1997.



Censoring and truncation

Figure: Long 1997.



Censoring and truncation

Truncation and censoring cause inconsistency in OLS estimates of
the slope parameter (increasing n doesn’t solve the problem if the
additional observations come from the same data-generating
process).



Tobit

• The typical censored normal regression model (a.k.a. Tobit,
after James Tobin) starts with a latent (incompletely
observed) variable y∗. For truncation from below, y∗ is only
observed if y∗ exceeds a threshold. Thus,

y∗ = x′β + ε,

ε = N [0, σ2]

• The observed y is defined by:

y =

{
y∗ if y∗ > 0,
– if y∗ ≤ 0,

where – means y is observed to be missing. No particular
value of y is necessarily observed, although it is common that
we observe y = 0.



Tobit

• Censoring and truncation change both the conditional mean
and the conditional density.

• Consider MLE given censoring from below. For y > L, where
L is the lower bound, the density of y is the same as that for
y∗: f (y |x) = f ∗(y |x).

• For y = L, the density is discrete with mass equal to the
probability of observing y∗ ≤ L, or F ∗(L|x). Thus,

f (y |x) =

{
f ∗(y |x) if y > L,
F ∗(L|x) if y = L.



Tobit

L92 REGRESSION MODELS

7.2. Truncated and Censored Distributions

Before formally considering the tobit model, we need some results
about truncated and censored normal distributions. These distributions
are at the foundation of most models for truncation and censoring. Re-
sults are given for censoring and truncation on the left, which translates
into censoring from below in the tobit model. Corresponding formu-
las for censoring and truncation on the right, and both on the lett and
on the right are available. For more details, see Johnson et al. (1994,
pp.1,5G162) or Maddala (1983, pp. 365-368).

7.2.1. The Normal Distribution

To indicate that y* is distributed normally with mean p and variance
02,we write y* - J{(p, oz).y* has the pdf:

r..*tr",d:#*o[-;(?)']
which is plotted in panel A of Figure 7.3. The cdf is

ry'
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J--
so that

Pr(Y* > 1l*) : 1 - F(Y* I t", o)

F(rlt",o) is the shaded region in panel A and t - F(r lpr, a) is the
region to the right of r.\
Ponel A: Normol

Limited Outt

When trr
the simplifi

Any norma
be written i
be written i

f0.lp
and the cdf

So that,

Since the sr

two identiti,

These resul
For examplt

7.2.2. TheTr

When val
cated normi
to consider

'6coo

pon.t S, Truncoted Ponel C: Censored

Censoring

Tl.LTp
Y' YIY)r

Figure 7.3. Normal Distribution With Tiuncation and

Figure: Long 1997.



Tobit

• The density can then be written as:

f (y |x) = f ∗(y |x)dF ∗(L|x)1−d ,

where d = 1 if y > L, and d = 0 if y = L.

• We can use this to compute the log-likelihood of the Tobit
model. The censored density can be expressed as:

f (y) =
[

1√
2πσ2

exp
{
− 1

2σ2 (y − x′β)2
}]d [

1− Φ
(
x′β
σ

)]1−d
.

• The density, therefore, is composed of two parts; uncensored
observations (d = 1) contribute information to the first part,
while censored observations (d = 0) contribute information to
the second part (you’ll notice that event history models deal
with censoring in the same way).



Tobit

• The Tobit MLE maximizes the censored log-likelihood
function:

lnLN(β, σ2) =
N∑
i

{
di

(
−1

2
ln2π − 1

2
lnσ2 − 1

2σ2
(yi − x′iβ)2

)
+ (1− di )ln

(
1− Φ

(x′iβ
σ

))}



Tobit

Limitations:

• A major weakness of the Tobit MLE is its heavy reliance on
distributional assumptions

• Tobit assumes homoskedastic and normal errors. If either of
those assumptions is violated, the Tobit MLE is inconsistent

• Consistent estimation with heteroskedastic errors can be done
by specifying a model for the error variance: σ2

i = exp(z′iγ).
Consistency then requires correct specification of the error
variance model

• Tobit restricts the censoring mechanism to be from the same
model as that generating the outcome variable. On the other
hand, two-part models allow the censoring mechanism and the
outcome to be modeled using separate processes (e.g., the
Heckman selection model and zero-inflated count models)



Heckman selection

• In the standard Tobit model, the outcome variable y∗ is
observed if y∗ exceeds some threshold (e.g., 0)

• We can make the model more general by letting the outcome
variable be observed as a function of a second latent variable

• Let y∗2 denote the outcome of interest. We can introduce a
different latent variable, y∗1 , and the outcome y∗2 is observed if
y∗1 > 0 and not observed otherwise.

• E.g., y∗1 determines whether or not to work and y∗2 determines
how much to work. Or y∗1 determines whether or not two
countries sign a treaty and y∗2 determines how flexible the
treaty is.



Heckman selection

• A bivariate sample selection model then comprises a selection
equation:

y1 =

{
1 if y∗1 > 0,
0 if y∗1 ≤ 0.

• And an outcome equation:

y2 =

{
y∗2 if y∗1 > 0,
– if y∗1 ≤ 0.

• The standard model specifies a linear model for the latent
variables:

y∗1 = x′1β1 + ε1,
y∗2 = x′2β2 + ε2.



Heckman selection

Where does selection bias come from?

E.g., suppose y∗2 , the outcome of interest, is wages and we want to
estimate the effect of education on wages. y∗1 represents the utility
of entering the labor market or the propensity to work. We might
believe education also influences a person’s decision to work.



Heckman selection

There are two selection effects at work:

• First, more educated people might be more likely to enter the
labor force, and so we’ll have a sample of educated people.
This non-random aspect of the sample is what is commonly
misunderstood to be the problem of ‘selection bias’ (see
Sartori 2003).

• But this on its own does not bias the estimation of the
outcome equation.



Heckman selection

• The second selection effect is that some uneducated people
will choose to enter the work force. This is because they
decide that work is worthwhile because they have a high value
on some unmeasured variable, which is captured by ε1. For
example, they may be smarter, but intelligence is not
measured in our sample. That is, these people get into the
sample not because they have high education, but because
they have large error terms. The problem is that, whether or
not education is correlated with the unmeasured intelligence
in the overall population, these two variables will be correlated
in the selected sample. If intelligence does lead to higher
wages, then we will underestimate the effect of education on
wages, because in the selected sample people with little
education are unusually smart.



Heckman selection

• The Heckman selection model is about selection on
unobservables.

• The problem arises because the error term in the selection
equation, ε1, is correlated with the error term in the outcome
equation, ε2. Errors in the outcome equation will be
correlated with explanatory variables.

• Thus, inconsistent estimates of β2.

• Heckman (1976, 1979) showed that the selection problem can
be treated as an omitted variable problem.



Heckman selection

• Assuming the correlated errors are joint normally distributed
and homoskedastic:[

ε1

ε2

]
∼ N

[[
0

0

]
,

[
1 σ12

σ12 σ2
2

]]

• The bivariate sample selection model has likelihood function

L =
∏n

i {Pr [y∗1i ≤ 0]}1−y1i{f (y2i |y∗1i > 0)× Pr [y∗1i > 0]}y1i

• We can use ML to estimate the parameters.



Heckman selection

• Heckman proposed a two-step estimator (LIML,
limited-information maximum likelihood).

• For the subsample with a positive y∗2 , the conditional
expectation of y∗2 is given by:

E (y∗2 |x2, y∗1 > 0) = x′2β2 + E (ε2|ε1 > −x′1β1)

• Given the assumption of joint normality and homoskedasticity
of the errors, it can be shown that

E (ε2|ε1 > −x′1β1) = σ12
σ1

φ(x′1β1/σ1)

Φ(−(x′1β1/σ1))



Heckman selection

• Heckman’s two-step proposal is to estimate the so-called
inverse Mills ratio

λ(x′1β1/σ1) =
φ(x′1β1/σ1)

Φ(−(x′1β1/σ1))

by way of a Probit model, and then estimate the following
equation using OLS:

y2 = x′2β2 + σ12λ( ̂x′1β1/σ1) + ε2



Heckman selection

• OLS standard errors will be wrong, though:
• First, because of heteroskedasticity in ε2. Could correct for

heteroskedasticity by using robust s.e.’s, but...
• Second, λ̂ is an estimator of λ, so the inverse Mills Ratio is

estimated with uncertainty. Need to take uncertainty into
account.

• Heckman 1979 provides a correction



Heckman selection

• Sample selection problem as a special case of omitted variable
problem (λ being the omitted variable).

• Heckman’s estimator is consistent if ε1 is normally distributed
and ε2 is independent of λ.

• Two-step procedure has efficiency loss compared to FIML

• But needs less restrictive distributional assumptions than
FIML estimator (MLE requires joint normality of errors)

• Still, LIML estimates very sensitive to distributional
assumptions

• Distributional assumptions of LIML can be weakened even
further to permit semiparametric estimation



Heckman selection

Identification issues:

• The bivariate sample selection model is theoretically identified
without any restriction on the regressors. That is, x1 and x2
can be the same

• If x1 = x2, then parameters are identified by nonlinearity of
λ(·) (inverse Mills Ratio)

• However, λ(·) is approximately linear over a wide range of its
argument. Thus, likely collinear

• Identification when x1 = x2 is fragile. Results not robust

• If x2 and λ highly correlated, then Heckman model might do
worse than OLS on the selected sample. Cure could be worse
than the disease.



Heckman selection

• Problem is less severe the greater the variation in x̂′1β1 across
observations (i.e., the better a probit model can discriminate
between participants and nonparticipants)

• In practice, one needs one or more variables in x1 that are
good predictors of y∗1 and do not appear in x2 (exclusion
restriction). But hard to find them!

• Don’t just remove a variable from x2 or add any variable to
x1. Theoretically unmotivated and leads to misspecification of
either or both equations.



Models for sample selection

Software implementation:

• Tobit:
• Stata: tobit
• R: vglm function of the VGAM package

• Heckman selection model:
• Stata: heckman (both FIML and two-step estimators)
• R: heckit function of the sampleSelection package



Models for sample selection

Recommended reading:

• Long, Scott J. 1997. Regression Models for Categorical and
Limited Dependent Variables. (Chapter 7)

• Cameron, A. Colin & Pravin K. Trivedi. 2005.
Microeconometrics: Methods and Applications. (Chapter 16)

• Heckman, J. J. 1976. “The Common Structure of Statistical
Models of Truncation, Sample Selection and Limited
Dependent Variables and a Simple Estimator for Such
Models.” Annals of Economic Social Measurement 5(4):
475–492.

• Heckman, J. J. 1979. “Sample Selection Bias as a
Specification Error.” Econometrica 47(1): 53–161.

• Puhani, Patrick A. 2000. “The Heckman Correction for
Sample Selection and its Critique.” Journal of Economic
Surveys 14(1): 53–68.



Models for sample selection

Recommended reading (cont.):

• Winship, Christopher & Robert D. Mare. 1992. “Models for
Sample Selection Bias.” Annual Review of Sociology 18:
327–350.

• Stolzenberg, Ross M. & Daniel A. Relles. 1997. “Tools for
Intuition about Sample Selection Bias and its Correction.”
American Sociological Review 62 (June 1997): 494–507.

• Vella, Francis. 1998. “Estimating Models with Sample
Selection Bias: A Survey.” Journal of Human Resources
33(1): 127–169.

• Sartori, Anne E. 2003. “An Estimator for Some
Binary-Outcome Selection Models Without Exclusion
Restrictions.” Political Analysis 11: 111–138.

• Nooruddin, Irfan. 2002. “Modeling Selection Bias in Studies
of Sanctions Efficacy.” International Interactions 28: 59–75.
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