
An Introduction to Reproducible Research in RStudio

Will Massengill

Program in Statistics and Methodology

Department of Political Science

Ohio State University

October 28, 2015

Reproducible Research

I Disclaimer: This presentation is largely based on the sources cited at the end.

I Computational research is replicable if independent researchers can easily use

replicate the results with the available data and code (Peng, 2011)

I Benefits for science

I Results are transparent
I Reduces frustration and effort involved in replication

I Benefits for you

I Improve your work habits
I Facilitate future changes to your work
I Broaden your research impact

Conducting Reproducible Research

I What the product looks like:

I Your data
I Code for statistical analyses
I Presentation of your results

I How to produce the output:

I Statistical language for collecting, wrangling, and analyzing data, and producing

graphics: R
I Markup language to present results: LATEX
I Reproducible research publisher for literate programming: knitr
I Environment that integrates these programs: RStudio
I Version control software for tracking changes over time: Git and GitHub
I Command line tools for managing files and running Git

What knitr Does

I Parses the source document to identify computer code

I Using regular expressions (Friedl, 2006)
I Based on format of knitr document
I Our focus is on .Rnw format, since you’ll use this to generate .tex (and .pdf) files

I Evaluates the code

I Using evaluate (Wickham, 2013) and base::eval()

I Renders output based on the format of the knitr document

I Using output hooks, which we’ll discuss later

I Can also extract R code with purl(”file.Rnw”)

Getting Started with knitr

I Set knitr as your preferred program for weaving R and LATEX:

Preferences B Sweave B knitr

I Open a new knitr document:

File B New File B R Sweave

I The .Rnw file is a plain text file that knitr reads to knit your code into a .tex

document, which will ultimately be used to generate a .pdf.

I If it is not installed, install.packages(”knitr”)

Code Input

I R code is inserted in code chunks, which have the format:

<<label, option = value>>=
code

@

I Label must be unique to code chunk
I Options specified like options in R, where values are logical or character
I Options can even accept conditional statements (e.g., if () else)
I <<>>= initiates code chunk, and @ ends it

I You can also execute inline code with:

\Sexpr{code}

Working with Text Output

I evaluate evaluates source code and returns a list with 6 classes of output:

character, source, message, warning, error, and recordedplot

I Output hooks tell knitr how to format this output so that it will be appropriate

for a .tex file

I But you can use output hooks to customize your output

I You can also set options globally

Default Code Chunk Options

I eval = TRUE instructs knitr to evaluate code in this chunk

I tidy = TRUE improves readability of the code with spacing and assignment

character using formatR (Xie, 2012)

I highlight = TRUE highlights elements in your code based on their type

I prompt = FALSE does not print the prompt character in the code output

I comment = ’##’ prints this comment character in front of results

I echo = TRUE prints the source code

I results = ’markup’ marks up the results based on knitr document (also see

’asis’ and ’hide’)

I warning/error/message = TRUE prints these messages

I split = FALSE does not redirect output to a different file

I include = TRUE includes chunk in your document

An Example: Input

<<”ex1”>>=

set.seed(50)

x ¡- sample.int(10, 7, replace = TRUE)

x; diff(x)

identical(diff(x), x[-1] - x[-length(x)])

@

An Example: Output

set.seed(50)

x ¡- sample.int(10, 7, replace = TRUE)

x; diff(x)

[1] 8 5 3 8 6 1 7

[1] -3 -2 5 -2 -5 6

identical(diff(x), x[-1] - x[-length(x)])

[1] TRUE

Working with Graphical Output

I It will be useful to load the caption and subfig packages in your LATEX header

I Plot first recorded as plot object by evaluate

I Plots recorded on per expression basis (see second example below)
I fig.keep = ’last’ only keeps last plot created by high-level plotting command

(e.g., plot())

I Then, plot replayed in graphical device

I dev = ’pdf’ uses grDevices::pdf to generate plot

I Options

I fig.show = ’asis’ inserts plots where they were created in chunk
I fig.width = 7 (fig.height = 7) generates a 7” by 7” plot in the graphical

device
I out.width (out.height) modify the size of the plot in the presentation document
I Control figure environment in LATEX: fig.env, fig.pos, and fig.scap

Plotting a Random Walk

<<”ex2”, fig.height = 3.5, fig.width = 5, fig.align = 'center', echo = FALSE>>=
set.seed(1)

n ¡- 1000

x ¡- cumsum(sample(c(-1, 1), n, TRUE))

par(mar = c(4, 4, 0.1, 0.3))

plot(x, type = ”l”, lwd = 0.5)

@

0 200 400 600 800 1000

−
40

−
30

−
20

−
10

0

Index

x

Another Graphics Example

<<”ex3”, fig.cap = 'Illiteracy and Murder Rate', fig.subcap = c('Points Only',
'The Regression'), out.width = '.49\\linewidth', echo = FALSE, fig.keep = 'all'>>=

attach(data.frame(state.x77))

fit ¡- lm(Murder ˜ Illiteracy)

plot(Illiteracy, Murder, pch = 20, col = 'darkgrey')
abline(fit, lwd = 2)

@

~

0.5 1.0 1.5 2.0 2.5

2
4

6
8

10
12

14

Illiteracy

M
ur

de
r

(a) Points Only

0.5 1.0 1.5 2.0 2.5

2
4

6
8

10
12

14

Illiteracy

M
ur

de
r

(b) The Regression

Figure 1: Illiteracy and Murder Rate

Discussing Results

I As Figure∼\{fig:ex3} indicates, the slope of the regression is
\Sexpr{round(coef(fit)[2], 2)}.
As Figure 1 indicates, the slope of the regression is 4.26.

I Alternatively, we can print results from the code chunk:

<<”printEq”, results = 'asis'>>=

cat(”The linear regression”, sprintf(”$Murder = %.02f + %.02f Illiteracy$...”,

coef(fit)[1], coef(fit)[2]))

@

The linear regression Murder = 2.40 + 4.26Illiteracy ...

Formatting Results in a Table

(Make sure \usepackage{dcolumn} is in your LATEX header)

<<”ex4”, include = FALSE, warning = FALSE>>=
library(apsrtable)

fit2 ¡- lm(Murder ˜ Illiteracy + log(Income))

fit3 ¡- lm(Murder ˜ Illiteracy + log(Income) + log(Area))

@

“begin–table˝

“caption–Regressions of Murder Rate˝

“label–tab:tab1˝

“begin–center˝

<<”table”, echo = FALSE, results = 'asis'>>=
apsrtable(fit, fit2, fit3, Sweave = TRUE, stars = ”default”)

@

“end–center˝

“end–table˝

~
~

Table 1: Regressions of Murder Rate

Model 1 Model 2 Model 3

(Intercept) 2.40∗∗ −17.94 −29.40

(0.82) (26.42) (24.60)
Illiteracy 4.26∗∗∗ 4.52∗∗∗ 4.53∗∗∗

(0.62) (0.71) (0.66)
log(Income) 2.39 2.58

(3.10) (2.85)
log(Area) 0.92∗∗

(0.30)
N 50 50 50

R2 0.49 0.50 0.59

adj. R2 0.48 0.48 0.56

Resid. sd 2.65 2.66 2.45

Standard errors in parentheses
† significant at p < .10; ∗p < .05; ∗∗p < .01; ∗∗∗p < .001

Final Details, Part 1

I When chunk option cache = TRUE, results from the chunk will be loaded lazily

only if:

I The code chunk has not been changed since its last execution
I Any (cached) chunks on which it depends have not been changed since its last

execution
I Chunk dependencies can be specified manually (dependson = ’chunklabel’) or

automatically (see Xie, 2014)

I You can also use chunks within other chunks

I Embed code chunks with: <<label>>
I To reuse chunks A and B, use the option ref.label = c(’A’, ’B’)

Final Details, Part 2

I We can extend chunk options with chunk hooks

I Can create an option for plot margins

<<”hook1”, include = FALSE, warning = FALSE>>=
knit hooks$set(margin = function(before, options, envir) {

if (before) # Only run before chunk is executed

par(mar = c(4, 4, 0.1, .1)) else NULL

})
@

I Can be triggered locally in chunk header with margin = TRUE

I Can also be triggered globally with opts chunk$set(margin = TRUE)
I ?knitr::knit hooks

Managing Your Files

I To make reproducabing your research easier, it is best to explicitly tie your files

together in a logical way

I To access a file, we must know it’s file path

I A file path tells you how your file is hierarchically stored on your hard disk

I These hierarchical lists are called directories, or file trees

I You can think of directories as folders

I Root directory: the ultimate parent directory

I Begins with C:\ in Windows
I Begins with the first / on Unix-like operating systems

I Subdirectories are directories within the root directory

I Your working directory is the directory “where” you are working

I Note: For Windows, in R you will need to type \\ instead of a single \

Manipulating Files

Table 2: Commands for File Management

Task R Unix-like Shell

Present Working Directory getwd pwd

Change Working Directory setwd cd

List Files in Working Directory list.files ls

Make New Directory dir.create mkdir/sudo mkdir

Create New File file.create/cat echo

Delete File/Directory unlink rm

Rename File file.rename mv (within same directory)

Copy File file.copy cp

Version Control with Git and GitHub

I Keeping track of the changes between files in typical file sequences

(File.v1.txt → File.v2.txt → File.v3.txt → File.v3b.txt → . . .)
is daunting, especially with plain text files (.R, .Rnw, or .tex)

I Version control systems (VCSs), like Git, track changes in documents over time

I Because Git is a distributed VCS, collaborators can work modify the same

document at the same time, merging their changes together afterward

I Git is a command line program, i.e., it interfaces with your computer’s shell

through the command line

I The shell passes commands to your operating system
I bash is a common shell program

I For many Git commands, you’ll use a terminal emulator, such as Terminal on

Macs or PowerShell on Windows

What Git Does

I When you create a Git repository for a file (git init), Git creates a series of

hidden folders (to see: find -a) that store data about the file and repository

I A Git repository is like a directory with a bunch of extra files for Git’s operations

I Each time you commit a file, Git saves information about the contents of the file

in its object store, along with file metadata, such as its directories, in its index

I The contents are saved with a SHA-1 hash, a unique identifier for the contents

of the file. The contents of the file can be reproduced by decrypting the SHA-1

hash (git cat-file -p ¡key¿)

I Rather than track each change to each document explicitly, Git can uncover the

differences between files using these keys (git diff)

The Git Workflow

I Set up a repository with a new file

I Create a directory for your project
I Initialize the repository
I Create a file
I add this file to be staged
I commit the file

I Make changes to a project

I branch off the master project and checkout a branch to make changes
I clone the entire repository or fetch particular objects
I If the repository is remote, pull objects from the repo, push committed files to

the repository, and resolve conflicting changes in the “Issues” area on your GitHub

repository

First Things First

If you haven’t yet, visit

https://help.github.com/articles/set-up-git/.

https://help.github.com/articles/set-up-git/

Running Git Locally

I Open your Terminal emulator

$ git # Can be a useful reference
$ pwd # Can give you an idea about where you are
$ ls # Also helps you determine where you are
$ mkdir Desktop/test/ # Create new folder on desktop
$ cd Desktop/test/ # Change directory to this folder
$ echo ’Hello world’ ¿ hello.txt # Create text file in directory

I Let’s use Git

$ git status # Nothing yet
$ git init # Initialize working directory as repo
$ find . # Lots of new hidden files
$ open .git # Can click through the folder
$ git add hello.txt # All files to be staged
$ git status # Another look
$ git commit hello.txt -m ”my first commit” # Commit files
$ git status -s # Short description

Running Git Locally

I Let’s modify the file, see changes, and recommit

$ git echo ’hello again’ ¿ hello.txt $ git diff # See differences between files
$ git add hello.txt
$ git commit hello.txt -m ”Second try”
$ git diff # No differences to note $ git log # See commit history

Git, continued

I Checkouts

I To change you working directory to a file, commit, or branch, use git checkout

---, where --- is the object reference
I To avoid referencing most recent commit with its SHA-1 hash, tag it and then

check it out

$ git tag -a v1 -m ”Version1”
$ git checkout v1

I Branches

I If you want to keep modifying a project in one direction, without changing the

master file, you can create a switch branches
I To show your current branch, git branch
I To create a branch called Test1, git branch Test1
I To switch to a branch, use git checkout
I To create and switch to a branch called Test1, use git checkout -b Test1
I To merge master and Test branches, use git merge Test1

Getting Started with GitHub

I GitHub is an online host for Git repositories

I This is a great place to store replication files for your research project

I Also a great place to find good code

I Provides a graphical user interface for projects with Git

Repositories on GitHub

I Push our existing repository to GitHub

I Once you’ve logged in, create a new repository (+H in the top right corner)
I Name your repository
I Add remote repository (called origin) and push master branch of local repository

to it

$ git remote add origin git@github.com:massengillw/NewTest.git # Can use url
$ git push -u origin master # Push local repository to remote repository

I Work with new repository on GitHub

I Once you’ve logged in, create a new repository
I Name your repository
I Add README file
I Should also add .gitignore file (tells Git which files not to track)

Using GitHub

I On the repository’s page, you can

I Create and commit a new file with RepoName/+

I Create and resolve issues (Issues tab on right side of page)

I Create and navigate branches

I Branch:master H
I Can create and commit new files in the new branch

I Generate pull request

I Request for help on the project
I Others can pull the project and try to improve the code

Incorporating RStudio

I Like for knitr, RStudio also integrates Git into your workflow

I Configure RStudio for Git

I Tools B Global Options B Git/SVN. Under Git Executable:
I For Macs, browse and find like /usr/bin/git
I For Windows, browse and find git.exe, probably in your Program Files

I Create a new version-controlled project

I File B New Project B Empty Project
I Check box to create Git repository for project
I Also note that you can clone an existing repository into a new project

I Initialize a current project

I Open existing project, then: Tools B Project Options B Git/SVN B Git

A Final Example

I Create a new repository on GitHub

I Create a new project in RStudio

I File B Version Control B Git
I Paste repository’s URL
I Name your project (the same name as GitHub repo)
I Tell RStudio where to save it

I Create a new file

I Stage, or add, the file

I Commit the file, adding a comment for your commit

I Push your commit to your remote repository

I Modify the file, stage, commit, push

I Explore the file changes in your remote repository (see Blame and History)

Have Fun!

If you have any questions, see the references, search Google, or email me at

massengill.8@osu.edu

mailto:massengill.8@osu.edu

References

Chacon, Scott, and Ben Straub. 2014. Pro-Git. New York: Apress.

Gandrud, Christopher. 2014. Reproducible Research with R and RStudio. Boca Raton, FL:

CRC Press.

Loeliger, Jon, and Matthew McCullough. 2012. Version Control with Git. Cambridge:

O’Reilly Media.

Peng, Roger D. 2011. “Reproducible Research in Computational Science.” Science

334:1226–1227.

R Core Team. 2014. R: A language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.

Shotts Jr., William, E. 2012. The Linux Command Line: A Complete Introduction. San

Fransicso: No Starch Press.

Wickham, Hadley. 2015. “evaluate: Parsing and Evaluation Tools that Provide More Details

than the Default.” R package version 0.7.2.

http://CRAN.R-project.org/package=evaluate.

Xie, Yihui. 2014. Dynamic Documents with R and knitr. Boca Raton, FL: CRC Press.

Xie, Yihui. 2015. “knitr: A General-Purpose Package for Dynamic Report Generation in R.”

R package version 1.10.5.

	Reproducible Research
	The Basics of knitr
	File Management and Versioning
	The Basics of Git

