While We Are Waiting...

• If you want to work along with the presentation
• All the materials are on the department share drive
 – Go to: I → PRISM → Brownbags → Intro to R
 – I:\PRISM\Brownbags\Intro to R
• Copy the following files into your K personal drive
 – The datasets are labeled
 • “World95.sav”
 • “south.txt”
 • “Senate2002.dta”
 – The command script is labeled “Rscript_V07_FINAL.txt”
 – The presentation is labeled “IntrotoR_V07FINAL.pdf”
PRISM Brownbag:
An Introduction to R

Dino Christenson & Scott Powell
Ohio State University
November 20, 2007
Introduction to R Outline

I. What is R?
II. Why use R?
III. Where to get R?
IV. GUI & scripts
V. Objects in R
VI. Matrices in R
VII. Reading datasets in R
VIII. Data Analysis
 i. Descriptives
 ii. Command functions and hand-rolling
 iii. Diagnostics
 iv. Graphing
 v. Functions and loops
IX. Moving forward
What is R?

• “R is a language and environment for statistical computing and graphics.”
• Software used for data manipulation, data analysis, and pretty graphical output
• Elements of the “environment”: programming language, run-time environment, graphics, and a debugger
• Bottom Line: It’s a statistics package.
Why use R?

• Flexibility
 – Design based on computer language (similar to S)
 – No reliance on preexisting tools/functions
 – Users can program their own code
 – Packages

• Flexibility is well suited to statistical simulation
Why use R?

• Graphical capabilities
 – Publication quality
 – High degree of manipulation

• Highly Interactive – User has to know what’s going on “under the hood”

• It’s Free

• All the kids are doing it
Why NOT use R?

• Data Management
 – Manipulation of data can be very cumbersome
 – Example: TSCS functions in Stata

• Start-Up Costs
 – It takes time to learn R
 – Need to be familiar with code and matrices
Where to get R?

• The R Project web page
 – http://www.r-project.org/

• Downloading the software
 – Pick a mirror and download

• Downloading packages
 – New packages available both randomly on the internet and at the site
R’s GUI

- Allows you to interact with R using graphical icons, as opposed to pure commands
- However R is primarily command driven

R’s Console

- Type your commands
- Receive your results
- Graphs are opened in new window
R’s GUI

- R’s GUI is very limited:
 - File: open, load, print and set working directory
 - Edit: copy, save and select
 - Packages: install and update
 - Help: functions (very helpful, sometimes)
 - Eg. Go to Help -> R functions -> (type) lm
 - A helpful guide on linear models is displayed
A Note on GUI

- R is command driven
- There isn’t much you can do with a button that you cannot do with a command, if anything
- For eg, we could also get help on the `lm` function by typing `help("lm")` in the console
R Script

• Beyond typing directly to the console, R allows you to keep track of all your commands in a text document called a “script”

• Starting a new script is easy: File → New script
 – A new window opens: the “R Editor”
R Script

• Treat the editor like a txt editor
 – Save it periodically
 – Annotate with ‘#’

• After inputting your commands
 – You can run all or select some of the commands to run from the script
R Script

• You can find all the examples from this presentation on the aforementioned script
 – I:\PRISM\Brownbags\Intro to R\introR_V07.txt

• If you are working along
 – Copy the script onto your personal drive
 – Go to File → Open script
 • Browse in your folders for the script
 • Select it
 – It opens in a new window
Working Directories in R

• R may write over previous R output if you do not specify appropriate working directories
 – So we need to establish a particular folder in which to work from and save our output to each time
• Syntax procedure: in the console or the editor
 – `setwd("K:\PRISM\Brownbags")`
• GUI procedure: drop-down menus
 – For PCs
 • Go to File → Change working directory
 • Browse for the folder of your choosing
 – For Mac Users (who are super cool, btw)
 • Go to Misc → Change working directory
 • Select/create the folder for this project
• Thus this new directory will have your data as well any output created from R
Objects in R

• R is based on objects: vectors & matrices
• When entering commands
 – Expressions and commands are case-sensitive
 – Anything following the pound symbol (#) is treated as a comment and ignored by R
 – An object name must start with an alphabetical character but may contain numbers and periods thereafter
 – Arrow keys allow you to scroll through previous commands at the prompt
• Note: for this presentation all R syntax will be in Courier New font
Objects in R

• The basic R format for commands
 – object.name <- command(command options)
 – object.name = command(command options)
 – Note: = and <- equivalent after R1.4.0#
 • Pick one and stick with it

• So
 – The arrow function defines the object (call it any.name)
 – Canned operations identified by the parentheses
 – Command options identified by what’s within the parentheses
 – Results are returned with a numeric indicator of the data frame, eg [1] if it is a vector
Objects in R

• Before jumping into a large dataset, let’s create some simple objects in R
 – Vector
 • `v <- c(10,15,20)`
 • `v`
 – Matrices
 • `m <- matrix(c(10,15,20,25,30,35,40,45), ncol=4)`
 • `m`
Objects in R

- Beyond numerical vectors, we can also do character or logic vectors
 - A character vector
 - `character <- c("protestant", "catholic", "jewish")`
 - `character`
Objects in R

- So you’ve created a couple of objects
- How do you see what objects you have?
 - `objects()`
 - `ls()`
- Objects will remain until they are removed
- To remove an object
 - `rm(object_name)`

```r
RGui
File Edit View Misc Packages Windows Help

R Console
> ###Entering objects###
> v <- c(10,15,20)
> v
[1] 10 15 20
> m <- matrix(c(10,15,20,25,30,35,40,45),ncol=4)
> m
[1,] 10 20 30 40
[2,] 15 25 35 45
> character <- c("protestant", "catholic", "jewish")
> character
[1] "protestant" "catholic"  "jewish"
> ###Listing objects###
> objects()
[1] "character"  "m"  "senate02.data"  "world95.data"  "v"
> ls()
[1] "character"  "m"  "senate02.data"  "world95.data"  "v"
```
Matrices in R

• Thus our objects are really vectors and matrices in R
 – How R handles matrices is key to understanding how R can work for you
 – Allows us to calculate coefficients, std errors and t scores...etc.

• So let’s try creating a few more matrices for practice
 – As we saw above, matrix turns a distribution of values into a matrix of n rows and k columns
Matrices in R

- \(\text{mat1} \leftarrow \text{matrix(c(11,21,12,22,13,23), nrow=2, ncol=3)} \)
- \(\text{mat1} \)
 - This gives you a 2x3 dimensional array of the numbers and placements you specified above
 - R reads by row first taking the first two numbers as row 1 and row 2 then starting a new column with the next two and so on...
- What happens when you reverse the row and column dimensions?
Matrices in R

- With larger datasets we may want to know the dimensions of the data
 - `dim(mat1)` gives you the nxk dimensions
 - `ncol(mat1)` the columns
 - `nrow(mat1)` the rows
Matrices in R

- We can also input data from a sequence of numbers
 - `seq(from, to, by)`
 - Where
 - `from` is the beginning value of the sequence
 - `to` is the ending value of the sequence
 - `by` is the difference between consecutive values
 - `mat3 <- matrix(seq(1,10,1), nrow=2, ncol=5)`
 - `mat3`
Matrices in R

- **Addition**
 - To add matrices we just use the summation sign
 - mat1 + mat4
 - To subtract two matrices use the negative sign
 - mat1 - mat4

```r
> mat4 <- matrix(seq(0,5,1), nrow=2)
> mat4
[,1] [,2] [,3]
[1,]  0  2  4
[2,]  1  3  5
> mat1
[,1] [,2] [,3]
[1,] 11 12 13
[2,] 21 22 23
> mat4
[,1] [,2] [,3]
[1,]  0  2  4
[2,]  1  3  5
> mat1 + mat4
[,1] [,2] [,3]
[1,] 11 14 17
[2,] 22 25 28
> mat1 - mat4
[,1] [,2] [,3]
[1,] 11 10  9
[2,] 20 19 18
```
Matrices in R

• Multiplication of matrices is performed by \%*\%
 – `mat1*mat2`
 – 2x2 matrix results

• Kronecker product is performed by \%x%
 – `mat1%*%mat3`
 – 4x15 matrix results
Matrices in R

- For regression and beyond a few more commands are especially helpful
- Extracting the determinant of a square matrix
 - `det(mat6)`
- Inverting matrices
 - `solve(mat6)`
Matrices in R

- Transposing a matrix
 - `t(matrix)`

- Create a matrix with a particular diagonal
 - `diag(value, nrow=x, ncol=y)`

- Extracting eigenvalues and eigenvectors
 - `eigen(matrix)`

```
R Console
> mat6
 [,1] [,2]
[1,] 11 12
[2,] 21 22
> det(mat6)
[1] -10
> solve(mat6)
 [,1] [,2]
[1,] -2.2 1.2
[2,] 2.1 1.1
>
> t(mat1)
 [,1] [,2]
[1,] 11 21
[2,] 12 22
[3,] 13 23
> diag(1,nrow=5,ncol=5)
[1,] 1 0 0 0 0
[2,] 0 1 0 0 0
[3,] 0 0 1 0 0
[4,] 0 0 0 1 0
[5,] 0 0 0 0 1
> eigen(mat6)
$vectors
 [,1]    [,2]
[1,] -0.4738594 -0.7280128
[2,] -0.8806005  0.6855635
```
Matrices in R

• We now have the basic understanding of the R language to “hand-roll” an ordinary least squares (OLS) regression and calculate the std. errors
 – $y_i = \alpha + \beta x_i + \varepsilon_i$
 – In matrix form: $(X'X)^{-1} X'Y$

• We can
 – Bind values into a vector
 – Invert matrices
 – Transpose matrices

• To do so with much larger datasets is where we move next...
Datasets in R

• We can create simple datasets by simply naming the rows and columns of an object

• However, we will often be looking at much larger datasets than those we just created
 — Unless of course you’re a comparativist 😊
 — Typically we collect or store the data as other file types

• Fortunately R reads all kinds of datasets
 — ASCII or .txt files
 — SPSS or .sav files
 — STATA or .dta files

Use the “foreign” package
Datasets in R: ASCII

• ASCII files are common among political science data (.txt or .dat)

• Let’s read into R the “south.txt” data using the `read.table` function

 – `south.data<-read.table("south.txt", header=TRUE)`

 – Note: we are assuming this data is already in our working directory
Datasets in R: ASCII

- Let’s check and see what new objects we have
 - `objects()`
- What are the names of our variables
 - `names(south.dta)`
- How can we use the variables as vectors in our subsequent analyses?
 - Attach the data
 - `attach(south.dta)`
Datasets in R: Foreign

• To read in other types of data, we must load the `foreign` package
 – `library(foreign)`

• Quick digression on packages
 – R has a host of packages – over a thousand of them, actually
 • Open source
 – Dangers to using a package without knowing what it really does
 – Use at your own risk
 • STATA and SPSS better about testing the merits of canned commands
 – Packages have “canned” routines for some of the most frequently used statistical commands
 • Recall the `lm` command which comes from the linear models package
 – Getting packages
 • Go to Packages
 • Select an appropriate mirror (go Blue?)
 • Download the package of your choosing
Datasets in R: SPSS

• Let’s read into R the “World95.sav” data using the foreign package

 - `world95.data <- read.spss("World95.sav")`

 - Note: we are again assuming this data is already in our working directory

• Cute feature

 - If the data is not in the working directory, we can browse for the data file with the `file.choose` option

 - `world95.data.2 <- read.spss(file.choose())`
Datasets in R: SPSS

• Let’s check and see what new objects we have
 – `objects()`
• What are the names of our variables
 – `names(world95.dta)`
• How can we use the variables as vectors in our subsequent analyses?
 – Attach the data
 – `attach(world95.dta)`
Datasets in R: STATA

• How about a .dta file from STATA?
 – I prefer to do all my data recoding in STATA and then use R for analyses and graphs

• Let’s read into R the “senate.dta” data using the foreign package
 – This package is already loaded so we don’t need to do so again
 – senate02.data<- read.dta(“Senate2002.dta”)
 – As always
Datasets in R: STATA

- Again...
- Let’s check and see what new objects we have
 - `objects()`
- What are the names of our variables
 - `names(senate02.dta)`
- How can we use the variables as vectors in our subsequent analyses?
 - Attach the data
 - `attach(senate02.dta)`
- And now we are ready for data analysis!

```r
> attach(world95.data)
> objects()
[1] "character" "m" "senate02." "world95.data"
> names(senate02.data)
[1] "repvhr" "income" "presvote" "pressup"
> attach(senate02.data)
> `
Data Analysis: Descriptive Stats

- R has several built-in commands for describing data
- The `list()` command can output all elements of an object

```R
> list(data)
[[1]]
repvahr income presvote pressup
1 59.52665 34135 56.0 88
2 88.14516 31571 59.0 95
3 52.55351 47203 51.0 96
4 41.20511 47301 42.0 77
5 33.86671 8233 55.0 90
6 66.48880 37572 67.0 95
7 38.65622 46590 63.0 67
8 44.69222 39969 65.0 69
9 61.67520 33672 57.0 96
10 48.29952 32566 53.0 84
11 58.43565 37290 81.0 88
12 38.46676 48867 56.0 66
13 33.55933 33024 55.0 88
14 84.97204 39250 62.0 98
15 65.04277 34133 47.8 96
16 61.21235 35400 60.0 96
17 58.66800 40916 46.5 91
18 21.57351 42090 32.0 66
19 55.13118 37082 57.0 82
20 49.92046 35282 60.0 68
21 34.88886 29604 62.0 71
22 56.77559 37592 68.0 93
```
Data Analysis: Descriptive Stats

- The `summary()` command can be used to describe all variables contained within a dataframe.

- The `summary()` command can also be used with individual variables.
Data Analysis: Descriptive Stats

• Simple plots can also provide familiarity with the data

• The `hist()` command produces a histogram for any given data values
Data Analysis: Descriptive Stats

- Simple plots can also provide familiarity with the data
- The `plot()` command can produce both univariate and bivariate plots for any given objects
Data Analysis: Descriptive Stats

Other Useful Commands

- sum
- mean
- var
- sd
- range
- min
- max
- median
- cor
- summary
Data Analysis: Regression

• As mentioned above, one of the big perks of using R is flexibility.

• R comes with its own canned linear regression command: 
  \texttt{lm(y \sim x)}

• However, we’re going to use R to make our own OLS estimator. Then we will compare with the canned procedure, as well as Stata.
Data Analysis: Regression

- First, let’s take a look at our code for the hand-rolled OLS estimator
- The Holy Grail: $(X’X)^{-1} X’Y$
- We need a single matrix of independent variables
- The `cbind()` command takes the individual variable vectors and combines them into one x-variable matrix
- A “1” is included as the first element to account for the constant.
Data Analysis: Regression

- With the \( x \) and \( y \) matrices complete, we can now manipulate them to produce coefficients.
- After performing the divine multiplication, we can observe the estimates by entering the object name (in this case “\( b \)”).

```r
Hand-rolled OLS
x <- as.matrix(cbind(int_1, income, presvote, pressup))
y <- as.vector(repushr)
I <- diag(1, nrow(x), ncol=ncol(x))
nc <- length(y)
p <- ncol(x) - 1

X'Y
xy <- t(x) %*% y
xx <- solve(t(x) %*% x)
hat <- diag(1, nrow(x), ncol=x)
b <- as.vector(xx %*% xy)

names(b) <- colnames(x)
what <- as.vector(xx %*% b)
res <- y - what # or (1-I) %*% y

total sum of squares
ssts <- sum(res^2)
sse <- ssts - sst

degrees of freedom for error
total degrees of freedom
df.e <- (n - p - 1)
df.t <- (n - I)
df.m <- df.t - df.e

s2 <- as.vector(sse/df.e) # or (t(res)^2) %*% (n-p)
sig <- sqrt(s2)
r2 <- 1 - (sse/sst)
r2.adj <- 1 - (sse/df.e)/(sst/df.t)

aicc <- n * log(sse/n) + 3/2
bic <- sse/2 - (n-2)*p1

coefficient standard errors
b.standard.errors <- sqrt(diag(xx)) %*% sqrt(s2)

t-statistic for std. errors
b.t.statistic <- b/b.standard.errors
b.t.prob <- 2 * (1 - pt(b.t.statistic, df.e))

alpha 0.05
b.t.prob <- 2 * (1 - pt(b.t.statistic, df.e))
```
Data Analysis: Regression

- With the x and y matrices complete, we can now manipulate them to produce coefficients.
- After performing the divine multiplication, we can observe the estimates by entering the object name (in this case “b”).
To find the standard errors, we need to compute both the\nvariance of the residuals\nand the cov matrix of the\nx’s.

- The sqrt of the diagonal\nelements of this var-cov\nmatrix will give us the\nstandard errors.
- Other test statistics can be\neasily computed.
- View the standard errors.

```r
Hand-rolled OLS
x <- as.matrix(cbind(int-1, income, presvote, pressup))
y <- as.vector(repsurr)
I <- diag(1, nrow=nrow(x), ncol=ncol(x))
nc <- length(y)
p <- ncol(x)-1

xx <- t(x) %*% x
xxi <- solve(t(x) %*% x)

h <- xx %x% x
i <- diag(1, nrow=n, ncol=n)
b <- as.vector(xxi %x% x)

names(b) <- colnames(x)
what <- as.vector(x %x% b)

res.yihat <- y - what # model residuals
res <- res.yihat

s2 <- as.vector(sse/df.e) # or (t(res)%*%res)?(n-p-1)
sigma2 <- as.vector(sse/(n-p))
r2 <- 1 - (sse/sst)
r2.adj <- 1 - ((sse/df.e)/(ssth/df.t))
adj <- n*%log(sse/n)+3 paz
Cp <- (sse/s2)-(n-2*(p+1))
f <- (ssr/model)/(sse/df.e)
pvalue <- 1-pf(f, df.m, df.e)

b.standard.errors <- sqrt(diag(xxi)) * sqrt(r2)

b.t.statistic <- b/b.standard.errors
b.t.prob <- 2*(1-pt(b.t.statistic, df.e))
```
To find the standard errors, we need to compute both the variance of the residuals and the cov matrix of the x’s.

The sqrt of the diagonal elements of this var-cov matrix will give us the standard errors.

Other test statistics can be easily computed.

View the standard errors.
Data Analysis: Regression

- To find the standard errors, we need to compute both the variance of the residuals and the cov matrix of the x’s.
- The sqrt of the diagonal elements of this var-cov matrix will give us the standard errors.
- Other test statistics can be easily computed.
- View the standard errors.
Data Analysis: Regression

- **Time to Compare**

- **Use the `lm()` command** to estimate the model using R’s canned procedure

- As we can see, the estimates are very similar
Data Analysis: Regression

• Time to Compare
• We can also see how both the hand-rolled and canned OLS procedures stack up to Stata
• Use the `reg` command to estimate the model
• As we can see, the estimates are once again very similar
Data Analysis: Regression

R Console

> b
  int income presvote presup
-7.295e+01 6.743e+07 8.218e-01 9.088e-01
> b.standard.errors
  int income presup
2.474e01 3.878e01 3.105e01 2.208e01
> call using the canned R procedure (i.e. the 'lm' command)
> canned.ols <- lm(repvote ~ income + presvote + presup)
> summary(canned.ols)

Call:
  lm(formula = repvote ~ income + presvote + presup)

Residuals:
     Min      1Q  Median      3Q     Max
-21.8269  -4.7384   0.6884   5.8808  14.8608

Coefficients:
                     Estimate  Std. Error t value Pr(>|t|)
(Intercept)            -7.295e+01  2.474e+01  -2.948   0.00860  **
income                  6.743e+07  3.878e-04   1.739   0.09918   .
presvote               -6.022e-01  3.105e-01  -1.939   0.06830   .
presup  ose -2.208e-01  3.105e-01  -3.662   0.00170  **

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 9.702 on 18 degrees of freedom
Multiple R-Squared: 0.6736,  Adjusted R-squared: 0.6192
F-statistic: 12.38 on 3 and 15 DF,  p-value: 0.0001245

>
Data Analysis: Regression

Other Useful Commands

- **lm**
  - Linear Model
- **lme**
  - Mixed Effects
- **anova**
- **glm**
  - General lm
- **multinom**
  - Multinomial Logit
- **optim**
  - General Optimizer
OLS Diagnostics in R

• Post-estimation diagnostics are key to data analysis
  – We want to make sure we estimated the proper model
  – Besides, Irfan will hurt you if you neglect to do this
• Furthermore, diagnostics allow us the opportunity to show off some of R’s graphs
  – R’s real strength is that it has virtually unlimited graphing capabilities
  – Of course, such strengths on R’s part is dependent on your knowledge of both R and statistics
    • Still, with just some basics we can do some cool graphs
OLS Diagnostics in R

• What could be *unjustifiably* driving our data?
  – Outlier: unusual observation
  – Leverage: ability to change the slope of the regression line
  – Influence: the combined impact of strong leverage and outlier status
    • According to John Fox, influence=leverage*outliers
OLS Diagnostics: Leverage

• Recall our ols model
  
  \[ \text{ols.model1} \leftarrow \text{lm(formula = repvshr~income+presvote+pressup)} \]

• Our measure of leverage: is the \( h_i \) or “hat value”
  
  – It’s just the predicted values written in terms of \( h_i \)
  – Where, \( H_{ij} \) is the contribution of observation \( Y_i \) to the fitted value \( Y_j \)
  – If \( h_{ij} \) is large, then the \( i^{th} \) observation has a significant impact on the \( j^{th} \) fitted value
  – So, skipping the formulas, we know that the larger the hat value the greater the leverage of that observation
OLS Diagnostics: Leverage

• Find the hat values
  
  \[ \text{hatvalues(ols.model1)} \]

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
0.08058958 & 0.38217510 & 0.21508254 & 0.17839298 & 0.07791739 & 0.17990212 & 0.21652515 \\
8 & 9 & 10 & 11 & 12 & 13 & 14 \\
0.13240657 & 0.12946990 & 0.11013685 & 0.17680240 & 0.20482571 & 0.09892587 & 0.12505991 \\
15 & 16 & 17 & 18 & 19 & 20 & 21 \\
0.25521188 & 0.12628592 & 0.13708349 & 0.32578291 & 0.07297085 & 0.32496207 & 0.25453795 \\
22 \\
0.20095287 \\
\end{array}
\]

• Calculate the average hat value
  
  \[ \text{avg.mod1<-ncol(x)/nrow(x)} \]

\[ \text{avg.mod1} \]

\[ [1] \ 0.1818182 \]
OLS Diagnostics: Leverage

- But a picture is worth a hundred numbers?
- Graph the hat values with lines for the average, twice the avg (large samples) and three times the avg (small samples) hat values
  - `plot(hatvalues(ols.model1))`
  - `abline(h=1*(ncol(x))/nrow(x))`
  - `abline(h=2*(ncol(x))/nrow(x))`
  - `abline(h=3*(ncol(x))/nrow(x))`
  - `identify(hatvalues(ols.model1))`
    - `identify` lets us select the data points in the new graph
- State #2 is over twice the avg
- Nothing above three times
OLS Diagnostics: Outliers

• Can we find any data points that are unusual for Y given the Xs?

• Use studentized residuals

  \[ u_i^* = \frac{u_i}{\sigma_{u(-1)} \sqrt{1 - h_i}} \]

  – We can see whether there is a significant change in the model

  – If their absolute values are larger than 2, then the corresponding observations are likely to be outliers

  – `rstudent(ols.model1)`

```
> rstudent(ols.model1)
 1 2 3 4 5 6
0.46019795 1.97192270 -1.81307635 -0.59849094 -0.86387841 -0.31785263
 7 8 9 10 11 12
 0.01244686 0.68902256 0.31806983 -0.05965655 0.97657494 0.02449043
 13 14 15 16 17 18
0.77709797 1.55317422 1.25355588 0.75886859 0.56108911 0.08776194
 19 20 21 22
0.25367148 0.99768167 0.12528015 -1.42108584
```
OLS Diagnostics: Outliers

• Again, let’s plot them with lines for 2 & -2
• States 2 and 3 appear to be outliers, or darn close
• We should definitely take a look at what makes these states unusual...
  – Perhaps there is a mistake in data entry
  – Perhaps the model is misspecified in terms of functional form (forthcoming) or omitted vars
  – Maybe you can throw out your bad observation
  – If you must include the bad observation, try robust regression
OLS Diagnostics: Influence

• Cook’s D gives a kind of summary for each observation’s influence

\[ D_i = \frac{u_i^2}{k + 1} \ast \frac{h}{1 - h_i} \]

• If Cook’s D is greater than \(4/(n-k-1)\), then the observation is said to exert undue influence

• Let’s just plot it
  - `plot(cookd(ols.model1))`
  - `abline(h=4/(nrow(x)-ncol(x)))`
  - `Identify(cookd(ols.model1))`

• States 2 and (maybe) 3 are in the trouble zone
OLS Diagnostics: Influence

For a host of measures of influence, including df betas and df fits

- `influence.measures(ols.model1)`

**dfbeta** gives the influence of an observation on the coefficients – or the change in iv’s coefficient caused by deleting a single observation

Simple commands for partial regression plots can be found on Fox’s website...

```
> Other measures of influence, including df-beta and df-fit
> influence.measures(ols.model1)
Influence measures of
 lm(formula = repvshr ~ income + presvote + suppres)
 dfb.1_ dfb.incm dfb.prsv dfb.prss dffit cov.r cook.d hat inf
1 0.047591 -0.08463 -3.65e-03 0.020468 0.14217 1.295 5.23e-03 0.0806
2 -1.312887 1.36488 5.54e-01 0.206512 1.55092 0.892 5.18e-01 0.3822 *
3 0.589635 -0.58486 2.12e-01 -0.542793 -0.94909 0.790 2.00e-01 0.2151
4 0.018551 -0.15898 9.62e-02 0.003785 -0.27888 1.407 2.02e-02 0.1784
5 0.140077 -0.13349 3.66e-02 -0.066607 -0.25112 1.148 1.60e-02 0.0779
6 0.074461 -0.02307 -1.05e-01 0.003705 -0.14584 1.486 5.60e-03 0.1739
7 0.000784 0.00338 6.08e-05 -0.003494 0.00654 1.604 1.13e-05 0.2165
8 0.137543 0.00171 3.56e-02 -0.197503 0.26917 1.298 1.87e-02 0.1324
9 0.012258 -0.06613 -2.85e-02 0.070448 0.12266 1.410 3.96e-03 0.1295
10 0.013501 0.01606 4.56e-03 -0.000609 -0.02099 1.411 1.17e-04 0.1101
11 0.181001 -0.17994 -3.79e-01 0.264511 0.45258 1.227 5.13e-02 0.1768
12 0.021751 0.00537 2.43e-02 -0.008720 0.01240 1.580 4.07e-05 0.2048 *
13 0.294634 0.56467 -1.25e-01 -0.026302 -0.92017 0.312 1.54e-01 0.0989 *
14 0.398730 0.13983 2.24e-01 0.261259 0.65223 0.753 9.58e-02 0.1251
15 0.177517 -0.31912 -4.41e-01 0.439292 0.59858 1.329 8.93e-02 0.2552
16 0.000611 0.04267 -2.17e-03 -0.037603 -0.08701 1.421 2.00e-03 0.1263
17 0.000169 -0.00028 -7.43e-02 0.072067 0.10442 1.433 2.87e-03 0.1371
18 0.346076 0.04901 3.86e-01 0.055702 -0.56220 1.603 8.06e-02 0.3258
19 0.009685 -0.00750 3.67e-02 -0.032806 0.07117 1.335 1.34e-03 0.0730
20 0.185511 -0.04938 4.76e-01 -0.595824 0.69222 1.483 1.20e-01 0.3250
21 0.059471 -0.05104 3.78e-03 -0.037402 0.07321 1.680 1.42e-03 0.2545 *
22 0.352385 -0.14803 -5.73e-01 0.119730 -0.71266 1.004 1.20e-01 0.2010
```
OLS Diagnostics: Normality

- Is our data distributed normally?
- Was it correct to use a linear model?
- Use a quantile plot (qq plot) to check
  - Plots empirical quantiles of a variable against studentized residuals
  - Looking for obs on a straight line
  - In R it is simple to plot the error bands as well
  - Deviation requires us to transform our variables
- `qq.plot(ols.model1, distribution="norm")`
- The problems are again 2 and 13, with 3, 22 and 14 bordering on trouble this time around
OLS Diagnostics: Normality

• A simple density plot of the studentized residuals helps to determine the nature of our data.
• The apparent deviation from the normal curve is not severe, but there certainly seems to be a slight negative skew.

```
density.default(x = rstudent(ols.model1))
```
OLS Diagnostics: Error Variance

- We can also easily look for heteroskedasticity
- Plotting the residuals against the fitted values and the continuous independent variables let’s us examine our statistical model for the presence of unbalanced error variance
  - `par(mfrow=c(2,2))`
  - `plot(resid(ols.model1) ~ fitted.values(ols.model1))`
  - `plot(resid(ols.model1) ~ income)`
  - `plot(resid(ols.model1) ~ presvote)`
  - `plot(resid(ols.model1) ~ pressup)`
OLS Diagnostics: Error Variance

• Formal tests for heteroskedasticity are available from the \texttt{lmtest} library
  
  \begin{itemize}
  \item \texttt{library(lmtest)}
  \item \texttt{bptest(ols.model1)} will give you the Breusch-Pagan test stat
  \item \texttt{gqtest(ols.model1)} will give you the Goldfeld-Quandt test stat
  \item \texttt{hmctest(ols.model1)} will give you the Harrison-McCabe test stat
  \end{itemize}

\begin{verbatim}
> # Breusch-Pagan, Goldfeld-Quandt, and Harrison-McCabe tests
> bptest(ols.model1)

    studentized Breusch-Pagan test

data:  ols.model1
BP = 3.2325, df = 3, p-value = 0.3571

> gqtest(ols.model1)

    Goldfeld-Quandt test

data:  ols.model1
GQ = 1.6338, df1 = 7, df2 = 7, p-value = 0.2664

> hmctest(ols.model1)

    Harrison-McCabe test

data:  ols.model1
HMC = 0.3878, p-value = 0.235
\end{verbatim}
Finally, let’s look out for collinearity

To get the variance inflation factors
- `vif(ols.model1)`

Let’s look at the condition index from the `perturb` library
- `library(perturb)`
- `colldiag(ols.model1)`

Issues here is the largest condition index

If it is larger than 30, _Houston we have_...
OLS Diagnostics: Shortcut

- My favorite shortcut command to get you four essential diagnostic plots after you run your model
  - `plot(ols.model1, which=1:4)`

- Now you have no excuse not to run some diagnostics!

- Btw, look at the high residuals in the rvf plot for 14, 13 and 3 – suggesting outliers
The Final Act: Loops and Functions

• As was mentioned above, R’s biggest asset is its flexibility. Loops and functions directly utilize this asset.

• Loops can be implemented for a number of purposes, essentially when repeated actions are needed (i.e. simulations).

• Functions allow us to create our own commands. This is especially useful when a canned procedure does not exist. We will create our own OLS function with the hand-rolled code used earlier.
Loops

- **for** loops are the most common and the only type of loop we will look at today.

- The first loop command at the right shows simple loop iteration.
Loops

• However, we can also see how loops can be a little more useful.

• The second example at right (although inefficient) calculates the mean of income.

• Note how the index accesses elements of the “income” vector.

• Loops and Monte Carlo
Loops

• However, we can also see how loops can be a little more useful.
• The second example at right (although inefficient) calculates the mean of income.
• **Note how the index accesses elements of the “income” vector.**
• Loops and Monte Carlo
Functions

- Now we will make our own linear regression function using our hand-rolled OLS code.
- Functions require **inputs** (which are the objects to be utilized) and **arguments** (which are the commands that the function performs).
- The actual estimation procedure does not change. However, some changes are made.
Functions

• First, we have to tell R that we are creating a function. We’ll name it `ols`.

• This lets us generalize the procedure to multiple objects.

• Second, we have to tell the function what we want “returned” or what we want the output to look like.
Functions

- First, we have to tell R that we are creating a function. We’ll name it `ols`.

- This lets us generalize the procedure to multiple objects.

- Second, we have to tell the function what we want “returned” or what we want the output to look like.
Functions

• First, we have to tell R that we are creating a function. We’ll name it `ols`.

• This lets us generalize the procedure to multiple objects.

• Second, we have to tell the function what we want “returned” or what we want the output to look like.
Functions

OLS: Hand-rolled vs Function
Functions

- Implementing our new function `ols`, we get precisely the output that we asked for.

- We can check this against the results produced by the standard `lm` function.
Functions

- Implementing our new function `ols`, we get precisely the output that we asked for.

- We can check this against the results produced by the standard `lm` function.

```r
R Console

```
```
```
Our Favorite Resources

• Invaluable Resources online
  – The R manuals
    [http://cran.r-project.org/manuals.html](http://cran.r-project.org/manuals.html)
  – Fox’s slides [http://socserv.mcmaster.ca/jfox/Courses/R-course/index.html](http://socserv.mcmaster.ca/jfox/Courses/R-course/index.html)
  – Faraway's book
    [http://cran.r-project.org/doc/contrib/Faraway-PRA.pdf](http://cran.r-project.org/doc/contrib/Faraway-PRA.pdf)
  – Anderson's ICPSR lectures using R
    [http://socserv.mcmaster.ca/andersen/icpsr.html](http://socserv.mcmaster.ca/andersen/icpsr.html)
  – UCLA notes [http://www.ats.ucla.edu/stat/SPLUS/default.htm](http://www.ats.ucla.edu/stat/SPLUS/default.htm)
  – Keele’s intro guide [http://www.polisci.ohio-state.edu/faculty/lkeele/RIntro.pdf](http://www.polisci.ohio-state.edu/faculty/lkeele/RIntro.pdf)

• Great R books
  – Verzani’s book
  – Maindonald and Braun’s book
You’re Now Ready to Go!

• PRISM fellows are available for help
• Contact us with your questions:
  – Dino Christenson, Senior Methods Fellow
    [christenson.24@osu.edu](mailto:christenson.24@osu.edu)
    Derby 2049Q; Phone: (614) 292-9661
    Office Hours: Mon - Thurs: 9:00am-11:30am
    & by appointment

  – Scott Powell, Junior Methods Fellow
    [powell.413@polisci.osu.edu](mailto:powell.413@polisci.osu.edu)
    Derby 2049Q; Phone: (614) 292-9661
    Office Hours: Tues & Thurs: 9:30-11:30am 3:30-5:00pm
    Wed: 8:30-11:30am & by appointment
Upcoming PRISM Brownbags

• Please join us for our next brownbag
  – *An Introduction to STATA*
  – January 25, 2008
    10:30am-12:00pm
    Derby Hall 125
  • Should be very helpful if you are taking 686 next quarter!

• Spring quarter brownbag
  – *Bayesian Inference with WinBUGS*
    Date & Time TBA (Spring 2008)

• Additional information available on the PRISM website
  – [http://polisci.osu.edu/prism/luncheons.htm](http://polisci.osu.edu/prism/luncheons.htm)